Recherches de l’Air France 447

Les recherches se poursuivent sur la zone ou se serait ecrase l’Airbus A330, mais rien n’a ete localise. Dans un premier temps, les Bresiliens avaient parle de debris flottants et de nappe de kerosene, mais on sait aujourd’hui que ces elements ne sont pas lies a l’avion manquant.

Si on ne trouve pas cet avion dans cette zone, c’est qu’il n’y est peut etre pas tout simplement. Des le depart, les recherches ont ete lancees avec une hypothese : l’appareil s’est ecrase peu apres les derniers messages ACARS.

Cette hypothese est peut etre precipitee. En effet, l’ACARS annoncait des pannes successives d’equipements electroniques puis il est lui-meme devenu silencieux. L’ACARS etant lui meme un appareil electronique, il a pu etre victime du meme phenomene qui a cause le reste des pannes.

Peut-on faire confiance a l’ACARS ?
Nous parlons d’un avion dans lequel rien ne semblait fonctionner correctement. Dans ce contexte, il serait etonnant que l’ACARS soit le seul equipement 100% fonctionnel et coherent. Il n’est pas impossible qu’une partie des informations fournies par l’ACARS ne soient tout simplement fausses.

Options des pilotes : 
Un des rares ordinateurs qui n’a pas ete annonce comme defaillant par l’ACARS est le SEC 2. Avec le SEC 1 et les PRIM 1, 2, 3, il est un des cinq ordinateurs gerant les commandes de vol. A lui seul, il est suffisant pour piloter l’avion en loi directe. Si les pilotes avaient en plus dispose de l’horizon artificiel de secours, etant donne leur experience, ils auraient pu voler encore pendant un temps plus ou moins long.

L’histoire de l’aviation nous montre que les pilotes n’abandonnent jamais dans ces situations. Le Japan Airlines 123 a vole plus d’une demi-heure alors qu’il lui etait theoriquement voue a la chute libre. Les pilotes de DHL sur un A300 qui ont ete victime d’un missile au-dessus de l’Iraq ont meme pu revenir atterrir. Le United 232 est revenu a l’aeroport apres des heures de vol dans un avion ou rien ne fonctionnait… etc.

Donc si les pilotes de l’AF447 avaient pu un tant soit peu voler, ils auraient decide de faire demi-tour pour rejoindre la terre la plus proche : le Bresil. Cet avion disposait de la puissance de ses moteurs, de carburant et au moins du SEC 2. Il a peu etre parcouru une distance consequente avant d’arriver a l’endroit ou les pilotes ont perdu la bataille.

Cette hypothese expliquerait pourquoi les recherches sur la zone des derniers messages ACARS sont restees vaines.

Air Algérie vol 6289: Panne Moteur Non Gérée

Tous les jours, quelque part dans le monde, un avion de ligne connaît une panne de moteur au décollage. Heureusement, tous les avions de transport public sont conçus pour supporter une telle panne sans issue catastrophique. Les bimoteurs sont les plus contraignants parce qu’ils perdent la moitié de leur puissance lors de ce genre d’avaries. Ils peuvent avoir un taux de montée de quelques centaines de pieds par minute à pleine charge avec le train d’atterrissage rentré.

Tous les pilotes de multimoteurs décollent avec la panne de moteur en arrière pensée. C’est l’incident le plus probable lors de cette phase du vol. Pour que les bons réflexes soient dans la mémoire à court terme de tout le monde, il y a un briefing qui se fait avant chaque départ. Il tient compte de la météo, des spécificités du terrain et des conditions opérationnelles du jour. Il doit être concis et clair. En général, il ne concerne que la première minute du vol.

En général, l’accélération au décollage se divise en deux grands moments. La première phase débute au lâcher des freins. Tout problème important constaté pendant cette phase conduit à l’interruption du décollage. Elle se termine quand est atteinte une vitesse dite V1. Après cette vitesse, tout problème est traité comme une panne en vol. A V1, le pilote en fonction retire ses mains des manettes pour éviter qu’il ne les ramène vers idle par réflexe si une panne surgit.

Si un moteur s’arrête lors de la seconde phase, le décollage se poursuit. L’avion monte dans l’axe de piste, puis fait un tour et revient atterrir en priorité. Par contre, les premiers instants de la panne sont décisifs. Ils exigent une bonne coordination et une confiance totale entre les membres de l’équipage. Typiquement, le pilote en charge du décollage continue à piloter l’avion tout en adoptant sa technique aux circonstances. Un avion de ligne peut monter à plus de 2’000 pieds par minute lors d’un décollage normal. En cas de panne moteur, le taux de montée possible est de l’ordre de celui d’un monomoteur de tourisme, soit dans les 500 pieds par minute. Le pilote doit faire attention à ne pas laisser la vitesse baisser, comme il ne doit pas chercher à atteindre une vitesse supérieur à V2 ou V2+10 selon les compagnies. Les gestes de base consistent à pousser sur le manche pour aplanir la trajectoire de manière cohérente avec la puissance disponible, puis d’enfoncer le palonnier du coté du moteur sain pour contrer le moment de lacet due à la perte de symétrie de la poussée. Le pilote qui n’est pas aux commandes rentre immédiatement le train d’atterrissage pour diminuer la trainée de l’avion et augmenter les performances. Ces éléments sont rappelés durant le briefing. Une fois ces gestes simples réalisés, l’avion peut continuer à voler pendant des heures. A titre d’exemple, dans le cadre de sa certification, le Boeing 777ER vola pendant 6 heures et 29 minutes au dessus de l’océan sur un seul réacteur.

 

Boeing 777 panne moteur au décollage
Panne moteur au décollage sur Boeing 777 à pleine charge (Malaysia Airlines). Ne pose pas
le moindre souci à un équipage entrainé.
 

Le 6 mars 2003, le vol Air Algérie 6289 doit relier Tamanrasset à Alger avec une escale commerciale à Ghardaïa. L’avion utilisé est un 737-200 immatriculé 7T-VEZ. Cet appareil était l’une des machines les plus puissantes de la compagnie et c’était lui que l’on voyait sur les affiches collées dans les vitrines des agences Air Algérie. Délivré en 1983, ce Boeing commençait à dater et allait de moins en moins à l’étranger. Il restait sûr, mais le bruit de ses réacteurs JT8D-17A à faible taux de dilution devenait insupportable aux non-amateurs d’aviation.

Alors que les passagers sont à l’embarquement, peu avant 15 heures, quelque chose de grave se passe dans le cockpit. Le copilote, une femme de 44 ans, réalise toute seule la préparation du décollage. Le commandant de bord est absent et s’exclut totalement de la chaine du fonctionnement de l’avion. Il considère le décollage comme facile, et fort de ses 20 ans d’expérience, il n’accorde aucune attention à ce qui se passe autour de lui.

Pourtant, un départ de l’aéroport de Tamanrasset n’est jamais banal. Ce terrain situé au milieu du désert a tout de même une altitude de 1’377 mètres et il est entouré des reliefs de la chaine du Hoggar. La piste en service est généreuse, 3’600 mètres, mais elle est souvent fissurée sous les effets conjugués de la chaleur et du soleil de plomb. Le vol, qui part avec trois heures de retard, est bondé et l’avion proche de sa masse maximale. La carte de la compagnie indique qu’en cas de panne moteur au décollage de la piste 02, il faut monter dans l’axe jusqu’au VOR de TMS puis de faire un long virage à gauche pour s’éloigner au cap 239.

L’appareil commence à circuler avec 103 personnes à bord. C’est le copilote qui fera l’étape et le commandant de bord l’assiste. Aucun briefing n’est réalisé et l’éventualité d’une panne moteur jamais évoquée.

A 15:14, la puissance de décollage est affichée et l’avion commence à accélérer. Quelques secondes plus tard, il se cabre pour le décollage et à l’instant où les roues quittent le sol, une formidable explosion est entendue sur le coté gauche. A cet instant, le copilote demandait au commandant de rentrer le train d’atterrissage. Non seulement il ne le fera pas, mais il va lui prendre les commandes. Sur le CVR, le bout de dialogue suivant est entendu au moment de l’explosion :
Copilote : besm Allah, besm allah, besm allah, qu’est ce qui se passe ?
Commandant : Lâche ! Lâche !
Copilote : J’ai lâché ! J’ai lâché !
Commandant : Laisse ! Laisse !

Le copilote est totalement surprise par l’évènement et n’identifie par la panne. Au lieu de lui annoncer l’avarie moteur et de lui demander de tenir V2 tout en rentrant le train d’atterrissage, le commandant de bord saisit les commandes. D’après des tests réalisés en simulateur, il est très difficile à un pilote, même averti, de prendre les commandes à un instant critique. Pour cette raison, les règles stipulent que le pilote aux commandes continue à assurer sa fonction.

L’expérience en simulateur est la suivante : un décollage est réalisé en Boeing 737 puis au moment de la rotation, un réacteur est arrêté. A ce moment, on gèle le simulateur. Puis, on demande à des pilotes de prendre place et de gérer la panne dès que le simulateur sera relancé. Un pilote qui est aux commandes depuis le début de la panne a déjà une bonne sensation de ce que fait l’avion. Il peut le récupérer facilement. Par contre, un pilote qui n’avait pas les mains sur les commandes va exiger plusieurs secondes pour sentir l’avion. Or, au bout de ces secondes, l’avion est déjà dans une situation désespérée. Si le copilote avait pu garder les commandes, elle aurait eu bien plus de chances de sauver l’avion.

Le commandant n’a, par ailleurs, aucune confiance dans son copilote. Cette dernière fait partie d’une nouvelle génération arrivée aux commandes des avions sans sélection professionnelle. Dans l’Algérie des années 90, quand un responsable du personnel signait un contrat à un pilote, c’est qu’il rendait service à la personne qui l’avait recommandé. Il n’y avait ni candidats, ni sélection, ni dossiers. L’unique façon d’arriver aux commandes d’un avion de ligne était d’avoir un proche bien placé. Le reste, n’avait aucune espèce d’importance.

Ces situations déloyales créées au niveau du management, se répercutent sur le terrain par des pilotes de moins bonne qualité auxquels personne ne fait vraiment confiance. Quand arrivent des instants fatidiques pour lesquels les pilotes sont bien payés et longuement formés, le bon geste n’est pas réalisé. Malheureusement, ces configurations se retrouvent régulièrement en Afrique et contribuent fatalement à diminuer la sécurité des compagnies de ce continent.

Isolée et lâchant les commandes, le copilote ne sait plus trop quoi faire. Elle demande timidement :
– Gear-up ou bien ?

Traduisez : « est-ce que je rentre le train d’atterrissage ou est-ce que je le laisse sorti ? ». Les tables de performances de l’appareil sont on ne peut plus explicite. A charge maximale, si le train est sorti, le taux de montée théorique n’est que de 150 pieds par minute. De plus, cette valeur suppose une technique de pilotage parfaite que le moindre stress ou faux geste vient dégrader. En simulateur, ce taux variait entre +300 et -300 pieds par minute. En substance, il n’est pratiquement pas possible de voler un 737 en monomoteur avec le train d’atterrissage sorti.

Comme le commandant de bord ne répond pas à sa question, le copilote appelle la tour de contrôle :
– On a un petit problème, 6289

Il s’agit effectivement d’un petit problème, mais la mauvaise gestion va en faire un drame national. Plus urgent est à faire, le contrôleur peut très bien vivre sans être au courant de cette panne. Il y aura tout le temps de l’avertir quand le vol sera stabilisé.

 

Panne moteur gauche sur Boeing 767 au décollage à pleine charge (US Airways). Remarquez l’aileron droit levé et l’aileron gauche baissé. Le pilote braque le manche à droite pour contrer la tendance de l’avion à s’incliner sur la gauche, c’est-à-dire vers le moteur en panne. Le train d’atterrissage finit à peine de rentrer. Une fois équilibré par quelques gestes simples, l’avion peut voler pendant des heures sur un seul moteur.

 

Le commandant de bord est totalement surpris par la panne également. Il n’est même pas sûr qu’il ait pensé du tout avoir affaire à une panne de moteur. Une fois qu’il tient le manche,il garde la même assiette de montée, soit 18 degrés. Sur deux moteurs, ça donne +1’800 pieds par minute au variomètre. Sur un seul, c’est le décrochage assuré.

Le copilote comprend que le commandant est entrain de faire une bourde. Le stick shaker est entendu plusieurs fois et le GPWS envoi une alarme vocale « Don’t Sink ! ». Elle remet les mains sur les commandes.
– Lâche ! Enlève ta main ! s’écrie le commandant
– S’il vous plait ! répond le copilote d’une voix suppliante
– Enlève ta main ! Enlève ta main !

L’enregistrement se termine sur cette phrase. Alors qu’il avait atteint plus de 120 mètres de hauteur, l’équivalent d’un immeuble de 30 étages, l’appareil commence à revenir vers le sol de plus en plus vite. S’enfonçant dans le décrochage, il passe le seuil de piste et s’écrase contre le sol. Avant même qu’il ne s’arrête de glisser, il se transforme en boule de feu.

Sur les avions de ligne, au-dessus du train principal, il y a les réservoirs de carburant. Ceux-ci sont montés de sorte à ce que le train d’atterrissage, et pas la structure, supporte le maximum de leur poids lors de l’atterrissage. Quand un crash arrive le train sorti, le fut de celui-ci vient percer le réservoir et libérer le carburant. C’est comme donne un coup de masse sur un ciseau à froid posé sur une bouteille de gaz. L’avion s’embrase immédiatement.

L’accident ne fut pas classé comme survivable et la totalité des occupants du Boeing trouvèrent la mort sauf un.

 

 

Trois critères importants déterminent la survavibilité d’un crash. Il y a, tout d’abord, la valeur des forces de décélération. Si elle est trop élevée, elle devient incompatible avec la vie par lésion des organes internes. Le second élément, c’est l’intégrité des ceintures de sécurité, des harnais et des sièges. Le dernier est la conservation de l’espace habitable. Une violation importante de cet espace est incompatible avec la survavibilité du crash.

 

L’unique survivant était assis tout à l’arrière et sa ceinture n’était pas attachée lors de l’impact. Quand un moteur explose au décollage, il arrive souvent que des passagers détachent leurs ceintures de sécurité dans un réflexe de fuite. Dans ce cas, c’est ce qui sauva ce passager. Au lieu de subir une décélération violente, il fut projeté. Ceci absorba une partie de l’énergie et il eu la chance d’atterrir sur d’autres éléments amortissants. Cependant, il ne faut pas considérer l’absence de ceinture comme un élément favorable. Dans la majorité des cas, seuls ceux qui n’avaient pas ceinture sont tués ou gravement blessés. Lors de ce crash, le chef de cabine n’était pas attaché non plus. Alors qu’il était assis tout à l’arrière, il fut projeté vers l’avant et traversa les 36 mètres de l’avion pour aller s’écraser dans le cockpit.

L’accident du vol 6289, avec 102 victimes, est le plus grave jamais survenu en Algérie. Selon l’annexe 13 de la Convention de Chicago, une panne moteur n’est même pas un accident.

Voir aussi :
– Vidéo d’une panne moteur au décollage avec des pilotes correctement entrainés à bord.

 

Air Moorea vol 1121 – Environnement Marin et Corrosion ? /mise à jour

Suite à une demande arrivée par email, voici quelques considérations générales sur ce crash survenu il y a moins d’un mois. Aucune donnée n’est encore disponible. Ce que je vous dis là doit être sujet à caution.

L’appareil est un Twin Otter qui volait pour la compagnie depuis l’été 2006. Cependant, c’était un appareil ancien. Il suffit de savoir que la firme de Havilland a fabriqué cet appareil entre 1965 et 1988. Dans le meilleur des cas, il avait 19 ans.

Cet avion avait plus de 32000 heures de vol et faisait de nombreuses rotations par jour. Le matin du crash il en avait fait 3 déjà. Avec une moyenne de 30 minutes par vol, on peut estimer qu’il avait fait dans les 60’000 vols (ENORME).

Les avions qui sont exploités en environnement marin sont très menacés de corrosion. Les contrôles techniques courants ne permettent pas de déceler à temps l’étendue de cette corrosion.

Voici l’image d’un avion qui était entretenu selon les fameuses normes en vigueur :

Il s’agit du vol Aloha 243. L’avion avait 19 ans d’âge et avait réalisé plus de 89000 cycles. Il était tout le temps exploité sur des vols entre les îles de l’archipel Hawaii. Le haut de la cabine avait été arraché lors d’un vol en conditions normales. L’avion aurait pu être perdu.

Les constructeurs vendent des avions et le client est libre de les exploiter où il veut. Maintenant, il n’existe pas de procédures spécifiques aux appareils qui sont tout le temps exploités en environnement marin. Pourtant, ceux-ci développent de la corrosion qui peut aller très loin et provoquer la désintégration de l’avion en vol. Quand vous ajoutez à cela le nombre important de cycles d’atterrissages et de décollages, vous obtenez une cellule qui est encore plus fragilisée.

A suivre…


Nouvelle arrivée le 15 septembre 2007

“La direction du contrôle de la sécurité de la DGAC a décidé, jeudi 13 septembre, de suspendre l’agrément de maintenance de l’atelier d’Air Moorea qui entretient les appareils d’Air Moorea et Air Archipels”, a révélé la Direction générale de l’Aviation civile, jeudi soir dans un communiqué.

“Cette décision fait suite à une mission d’inspection de l’atelier de la compagnie Air Moorea par des agents de la DGAC et du GSAC (Groupement pour la sécurité de l’aviation civile), diligentée par le directeur général de l’aviation civile”, précise ce même communiqué, avant de mettre en avant “plusieurs écarts dont des irrégularités dans les procédures d’entretien et des manquements concernant la traçabilité des pièces détachées.

“Cette décision conduit le service d’Etat de l’aviation civile en Polynésie française à suspendre les certificats de transporteur aérien (CTA) délivrés à Air Moorea et Air Archipels. En effet, un CTA qui autorise une compagnie à effectuer du transport aérien public, n’est valable que si l’entretien des avions s’effectue dans un atelier agréé. En conséquence, les avions d’Air Moorea et d’Air Archipels sont immobilisés, y compris le Twin Otter d’Air Tahiti basé aux Marquises et exploité par Air Moorea”, conclut la DGAC.

Toutefois, note l’Aviation civile, “cette décision de suspendre l’agrément de l’atelier ne préjuge nullement des résultats de l’enquête judiciaire en cours. Pour l’heure, les causes de l’accident d’Air Moorea – ndlr: drame survenu le 9 août dernier dans le chenal entre Tahiti et l’île soeur faisant vingt victimes – restent inconnues”.


Nouvelle arrivée le 15 septembre 2007

Les avions d’Air Moorea et Air Archipels toujours cloués au sol

(Tahitipresse) – “A cette heure (ndlr: vendredi, en milieu d’après-midi), la décision de la Direction générale de l’Aviation civile ne nous étant pas parvenue, Air Moorea et Air Archipels vous informent que leurs vols effectués en Twin Otter et Beechcraft n’opèreront pas demain samedi 15 septembre”, annonce la compagnie dans un nouveau communiqué, s’excusant par ailleurs auprès de ses passagers.

Si des vols en ATR 42 sont programmés sur la ligne Tahiti-Moorea, en revanche, “les vols inter-Marquises sont annulés”, ajoute le transporteur aérien domestique.

Et de conclure concernant la journée de dimanche:” Ces dispositions seront également appliquées sauf réception d’une décision de la Direction générale de l’Aviation civile. Seraient concernés également pour cette journée de dimanche, les vols effectués en Beechcraft sur les Tuamotu Est”.

ATP

Feu à Bord – Partie 5 – FedEx vol 1406 – Chargement Dangereux

Quand un feu se déclare dans un avion, il faut surtout penser que celui-ci est assuré et donc remplaçable. Les humains ne le sont pas, même s’ils sont assurés aussi. Les pilotes perçoivent rarement le feu, mais surtout de la fumée ou des odeurs suspectes. Même s’il y a plusieurs écoles qui s’affrontent au sujet de la conduite à tenir, le commandant de bord a le droit et l’obligation de prendre toute mesure qui lui semble utile pour préserver la vie humaine.

Le transport de produits dangereux par avion pose toujours problèmes. Les avions de transport de passagers sont frappés de nombreuses restrictions et seuls les produits sans danger peuvent être emportés. Sur les avions de transport de fret, les régulations sont plus souples et permettent d’embarquer certains équipements sous réserve d’adhérence à des normes de sécurité et d’étiquetage. Aux USA, la FAA dispose d’une centaine d’agents spécialisés qui visitent les expéditeurs et les transports pour s’assurer que tout se fait selon les règles. Par contre, étant donné le nombre de paquets transportés, il est difficile d’assurer un contrôle complet et il y a régulièrement des incidents.

Dans la nuit du 5 septembre 1996, un DC-10 de FedEx décolle de la base de Memphis pour un aller-retour vers Boston. En plus des trois membres d’équipage, il y a deux passagers voyageant gratuitement. Dans la cabine sans sièges et dans les soutes, sont logés 36 containers dont certains équipés de systèmes d’extinction autonome capable d’y envoyer plusieurs kilogrammes de Halon.

Le Halon est un gaz utilisé pour l’extinction des incendies. Il ne provoque pas de court-circuits ni de toxicité vis-à-vis des utilisateurs. Il est aussi connu sous le nom de Freon 12B1. Sa fomule chmique est CBrClF2.

L’avion vole au niveau 330, il est 5:36 du matin quand une odeur de brulé surgit dans le cockpit. Deux secondes plus tard, les pilotes mettent leurs masques à oxygène et sortent leurs checklists d’urgence. Les deux passagers sont invités à venir au cockpit et s’équipent de masques également. Sur la console du mécanicien navigant, trois alarmes fumée s’allument. Elles concernent les zones 7, 8 et 9 situées tout à l’arrière de l’appareil.

Pendant quelques instants, les pilotes commencent à tester les alarmes et à vérifier différents systèmes selon la procédure. Tout à coup, le commandant de bord s’exclame en jetant ses checklists :
– Les gars, je crois qu’on a vraiment le feu !

Au même instant, il engage une descente d’urgence et contacte la tour de contrôle. Il s’est passé exactement 2 minutes et 11 secondes entre la détection de l’odeur et la décision d’une descente d’urgence. C’est presque trop long, mais il est difficile de faire plus court.

Le contrôleur aérien leur annonce qu’ils ont un aéroport à 50 miles nautiques devant et un autre à 25 nautiques derrière. C’est ce dernier qui est choisi et ses équipes de secours sont immédiatement alertées.

Soudain, la lampe du détecteur de fumée numéro 7 se met à flasher puis s’éteint. Ceci est un très mauvais signe. Il peut signifier que le détecteur a été endommagé par le feu. Le mécanicien se lève et entre ouvre la porte du cockpit. Dans le fond de la cabine, il lui semble voir de la fumée flotter dans l’air.

Le commandant synchronise avec les contrôleurs aériens tout en donnant des conseils au copilote crispé sur les commandes :
– Va-y gars ! Et ne ralentit pas à 250, on est en urgence là !

Pour des raisons liées à la circulation aérienne, les avions ne doivent pas dépasser une vitesse de 250 nœuds quand ils volent en-dessous de 10’000 pieds. Le copilote aurait pu respecter cette limitation de vitesse juste par habitude.

5:54, le DC-10 touche la piste après une plongée digne d’un avion de chasse. Dès que l’avion s’arrête, le commandant de bord réalise quelques opérations au jugé : il coupe les réacteurs et déconnecte la batterie. Par contre, on moment où la porte du cockpit est ouverte, les cinq hommes comprennent que le passage est fermé. Une épaisse fumée emplit toute la cabine. Le commandant de bord essaye d’ouvrir son hublot, mais celui-ci ne vient pas : l’avion est pressurisé ! Le mécanicien tourne les switchs et par miracle, le système réagit encore, mais lentement. La fumée avance et emplit tout l’espace vital.

Assis sur leurs sièges, les mains sur la manette d’ouverture de leurs hublots, les pilotes ferment les yeux et bloquent leur respiration. Ils savent que les vingt secondes à venir décideront de leur sort. Le mécanicien et les deux passagers respirent au ras du sol où un peu d’air pur circule encore. Au dehors, les pompiers courent dans tous les sens autour de l’appareil. Ils savent quelque chose de grave est entrain de se passer, mais ils n’ont jamais été entrainés à prendre en charge un DC-10. En été 1980, les pompiers saoudiens ont mis plusieurs minutes à ouvrir un L-1011 qui avait atterri en urgence suite à un feu à bord. Pendant ce temps, les 301 occupants avaient péri.

Alors qu’il n’y croit plus, le commandant sent la résistance baisser et le hublot revenir en arrière. Immédiatement, il se lève sur son siège et passe la moitié supérieure son corps dans l’ouverture. De son coté, le copilote fait pareil. Tout autour d’eux, de gros bouillons de fumée noire s’échappent comme de la cheminée d’une usine. Le mécanicien fonce vers la porte avant gauche, L1, et la déverrouille, mais elle refuse de s’ouvrir. Avec la dernière énergie qui lui reste, il tente avec celle d’en face, la R1. Heureusement, celle-ci répond correctement et le toboggan se déploie jusqu’au sol. Les derniers trois occupants s’y jettent sans hésiter. A ce moment, les pilotes, utilisant des cordes fixées au-dessus des hublots et se laissent glisser vers le sol. Mis à part un bleu sur le front du mécanicien, il n’y aucune blessure sérieuse.

Immédiatement, commence une lutte contre la montre pour sauver l’avion. Le DC-10 coute 95 millions de dollars et il transportait un chargement valant trois fois plus. Utilisant un couteau, un pompier éventre le toboggan et met en place une échelle. Il arrive jusqu’à l’entrée, mais ne peut pas aller plus loin. Le mécanicien lui explique qu’il y a un panneau de contrôle avec une poignée qu’il faut tirer pour ouvrir la grande porte cargo située sur le coté. Ceci permettrait d’arroser l’intérieur de l’avion depuis les canons à eau montés sur les camions. Le pompier disparait quelques secondes puis revient en courant. Dans sa main, il tient la poignée qu’il a arrachée en tirant dessus trop brutalement. La porte est tout de même ouverte à l’aide d’une pince et des tonnes d’eau sont envoyées dans l’avion. Au bout de 5 minutes, la peinture commence à faire des bulles puis bouillir en coulant. Peu avant sept heures du matin, les premières flammes crèvent le toit du DC-10 qui se met à bruler comme une torche. Les pompiers se positionnent plus loin et arrosent à pression maximale.

Peu avant dix heures, le feu est éteint parce qu’il il n’y a plus rien qui puisse bruler encore. Alourdi par le réacteur numéro 2, l’arrière de l’avion tombe au sol.

 



FedEx N68055 à l’aéroport de Newburgh, New York
 

 

Des vies humaines furent sauvées in extrémis. Si les pilotes avaient continué à investiguer le problème pendant encore une minute ou deux, personne ne serait sorti vivant de cette aventure. Les marchandises transportées furent inspectées. Plusieurs chargements suspects ont été trouvés y compris une machine de réplication d’ADN avec ses produits chimiques. La police retrouva également 4 colis différents contenant une substance verte d’origine végétale qui fut analysée. Pour les laboratoires, c’est du delta-9-tetrahydrocannabinol plus connu sous le nom de cannabis ou marijuana. Il y en avait pour près de 40 kilogrammes. Comme les étiquettes furent détruites par le feu, on ne retrouva pas les expéditeurs. De plus, ceux-ci évitèrent d’envoyer la moindre réclamation.

Malgré le renforcement des contrôles, les compagnies de transport de fret sont régulièrement victimes d’incidents.

Feu à Bord – Partie 3 – Différentes conceptions et Varig vol 820

…Si la fumée baisse, on continue le vol jusqu’à la destination, si elle ne baisse pas, on peut enfin considérer un atterrissage d’urgence.

Plusieurs écoles s’affrontent sur ce point. Certaines compagnies ont des checklists très catégoriques. On peut y lire dès le début : « Ne retardez pas la descente ou la diversion pour chercher la source de la fumée ! ». Dans cette procédure, la réaction se résume à mettre son masque, avertir la tour de contrôle et le personnel de cabine, puis plonger vers la première piste venue. La descente est un élément important et ce n’est pas la même chose que la diversion. Certains recommandent de descendre à l’altitude minimale du secteur ou même le plus près possible de l’eau dès les premiers signes de fumée. Ceci n’interdit pas de chercher la source par la suite, ni de tenter de rejoindre un aéroport proche si la situation le permet encore. L’idée dominante de cette philosophie est de se dire que si les choses se dégradent, on a intérêt à ce que l’avion soit le plus bas possible pour qu’un amerrissage ou qu’un atterrissage de fortune soient encore possibles pour sauver des vies.

En tout état de cause, quand l’équipage perçoit de la fumée, il y a deux issues possibles.

1 – Soit il n’y a pas de feu incontrôlé et donc pas de menace sérieuse,

2 – soit il y a un feu et il y aura crash, volontaire ou non, dans quelques minutes.

Malheureusement, force est de constater que les checklists interminables ne tiennent pas du tout compte de la seconde situation. Elles tablent toutes sur une situation sans gravité.

Ceci montre aussi un aspect souvent ignoré du grand public qui juge les pilotes selon leur réaction à telle ou telle situation. Les équipages, d’où qu’ils viennent, ont tous la même formation et les mêmes connaissances fondamentales. Par la suite, ce sont leurs compagnies qui vont les former et les entrainer à suivre des procédures spécifiques en situation d’urgence. Un équipage qui réagit mollement à une situation grave, ne fait que reproduire la politique de sa compagnie. Les drames aériens ne sont pas des accidents qui arrivent à des individus, mais à des organisations.

Le feu dégrade progressivement les systèmes des avions et finit par les rendre incontrôlables. De plus, la fumée ne doit pas être considérée juste comme un symptôme ! C’est un mal en soit. Des fumées toxiques en provenance d’un tas de valises entrain de se consumer en soute peuvent tuer tous les occupants d’un avion avant même de représenter un danger pour les différents systèmes techniques.

Varig vol 820
Cet accident arrivé à Paris en été 1973 illustre la dangerosité des fumées toxiques dégagées par un incendie. Le Boeing 707 avait décollé de Rio de Janeiro au Brésil pour Paris. A son bord, avaient pris place17 membres d’équipage et 117 passagers. Le long vol se déroule normalement et la descente commence sur Orly. Alors qu’il passe le niveau 80, les pilotes déclarent une urgence. De la fumée dense surgit dans le cockpit et dans la cabine.

Le contrôleur aérien change les plans et autorise l’avion à atterrir sur la piste 07 au lieu de la 26. C’est l’approche la plus directe même si elle doit se faire en vent arrière. Les pilotes mettent leurs masques à oxygène, mais rapidement la situation se détériore à tel point qu’ils ne peuvent même plus lire les instruments, ni voir ce qui se passe au dehors. En désespoir de cause, le commandant de bord ouvre son hublot et une partie de la fumée est dissipée.

Sur les avions de ligne, les hublots situés sur le coté du cockpit peuvent s’ouvrir en coulissant vers l’arrière. Une ouverture en vol est impressionnante, mais pas nécessairement dangereuse. Le vent s’engouffre dans le cockpit, mais sa puissance reste limitée parce que le hublot est presque latéral. Une carte Jeppesen clipée sur le manche n’est ni arrachée, si déchirée par ce vent relatif. Par contre, la communication entre les pilotes est réduite et ils doivent échanger en gestes étant donné le niveau de bruit ambiant. Certains pilotes recommandent d’ouvrir le hublot en vol en cas de fumée incontrôlée mais de nombreuses compagnies aériennes l’interdisent expressément. En Effet, il n’est pas possible d’entrainer les équipages à cette manœuvre au simulateur ni pendant des vols avec passagers.

Le 707 de Varig est à cinq kilomètres de la piste. C’est un peu plus d’une minute de vol, mais c’est une minute de trop. La situation est si intenable, que les pilotes décident d’atterrir sans plus attendre. Des champs se présentent, le commandant de bord sort les volets à 80 degrés et réduit les gaz. L’avion se prend d’abord dans des arbres puis arrive contre le sol meuble où il glisse puis finit par s’arrêter après d’importants dommages aux réacteurs et à la voilure.

Les pilotes sortent par le hublot et se retrouvent à l’air libre. Rapidement, les pompiers arrivent de l’aéroport et des communes avoisinantes. Une porte est ouverte, mais seule une lourde fumée noire s’en échappe. Il n’a aucun signe de vie. Un seul passager respire encore, ce sera le seul survivant. Le crash fit 123 victimes, toutes tuées par la fumée.


Varig 820
La cabine ne fut pas endommagée lors du crash

L’enquête détermina que le feu avait commencé dans les toilettes situées juste derrière le cockpit et avait généré un important dégagement de gaz toxiques. Tout en restant confiné à cet endroit et sans jamais menacer les systèmes de l’avion, ce feu provoqua un crash avec un bilan catastrophique. La cause même du déclenchement de l’incendie ne fut jamais établie avec certitude, mais à une époque où les passagers avaient le droit de griller une cigarette en vol, il ne faut pas chercher trop loin.

Crash Crossair vol CRX 3597

Cet accident, qui eut lieu à Zürich le 23 novembre 2001, démontre l’aspect multifactoriel des CFIT. Leur étude donne l’impression que le cycle infernal conduisant au drame aurait pu être désamorcé à chaque moment. Ce sentiment est trompeur. Chaque élément s’insère dans un système avec lequel il est cohérent. Cette harmonie est le ciment de l’ensemble et c’est elle qui fait que les évènements n’auraient pas pu se passer autrement.

La compagnie Crossair a fait son premier vol régulier en été 1979. Rapidement, ce nouveau venu sentit les orientations sous-jacentes d’un marché qui se redessinait. Les dirigeants déclaraient à la télévision que le temps où l’on additionnait le prix de revient et le bénéfice pour définir le coût d’un billet d’avion était révolu. Effectivement, avec les dérégulations entamées dès 1978, les formules classiques du commerce ne s’appliquent plus au domaine de l’aérien. Les compagnies doivent dans un premier temps définir à priori le prix du billet d’avion en fonction de l’offre et de la demande. Le prix obtenu de cette manière devient une condition imposée comme la vitesse du vent ou la longueur des pistes. Dedans, il faut faire rentrer le prix du carburant, celui des assurances, les salaires du personnel, les taxes d’aéroport, l’amortissement de l’avion, les frais de vente…etc. et s’il reste encore un peu d’argent, c’est le bénéfice ! Ce langage plait aux investisseurs et Crossair connaît une croissance régulière.

crash Crossair 3597

Les avions volent jour et nuit et les pilotes en font presque autant. Tous ont des horaires à la limite du maximum légal avec des salaires planchers. Les copilotes sont les moins bien payés. Jeunes et peu expérimentés pour la plupart, ils considèrent Crossair comme occasion de se faire des heures de vol et un peu d’argent de poche en attendant un emploi digne de ce nom ailleurs. Un peu mieux rémunérés, les commandants de bord viennent de tous les horizons. Autant en trouve des personnes sérieuses qui font leur métier avec art et dévouement, autant on rencontre des gens à la limite du hors jeu. Aucune compagnie aérienne au monde n’aurait voulu d’un commandant de bord comme celui qui veillait à la destinée du vol 3597.

A près de 60 ans, ce pilote cumulait deux emplois. A ses longues journées chez Crossair, il rajoutait en douce des heures d’instruction dans une école d’aviation de Zürich. Probablement une manière de boucler ses fins de mois, cette activité lui faisait régulièrement dépasser le temps de travail réglementaire pour un pilote. Son emploi du temps de la veille de l’accident est très éloquent. Il sort de chez lui un peu après cinq heures du matin et se rend à l’aéroport où il a rendez-vous avec un élève pilote vers 6 heures. A deux ils décollent pour un vol d’instruction à destination de Friedrichshafen en Allemagne. Il faut trois heures pour faire l’aller-retour en traversant des espaces aériens congestionnés. A midi, il met sa casquette de pilote de ligne et décolle pour Tirana en Albanie. C’est un vol qui dure deux heures et le pilote est de retour à Zürich peu après 17 heures. Ca fait déjà au moins 12 heures qu’il est au boulot, mais ce n’est pas fini. A 18:30, il décolle pour Milan et il est de retour à Zürich vers 21 heures. A 22 heures, il est chez-lui. Le temps de dormir un peu et à 8:30 le jour de l’accident, il s’envole comme instructeur pour un vol vers l’Allemagne.

Etre instructeur, pour de nombreuses compagnies, c’est une mauvaise référence. Les personnes impliquées longtemps dans cette activité peuvent développer des comportements les rendant incompatibles avec le travail d’équipe. Ce commandant de bord était décrit comme froid et distant et il centralisait toutes les décisions. Souvent, il faisait du one man operation en pilotant tout seul reléguant son copilote au d’un rôle d’observateur privilégié.

Avec le temps, il développa ses propres procédures et les incidents avec lui étaient nombreux. Aucun copilote n’avait le courage de le corriger ou de le contredire et souvent il mettait tout l’avion et les passagers dans des situations délicates. D’ailleurs, ce n’est qu’après sa mort que les langues commencèrent timidement à se délier.

Un jour, alors qu’il fait un vol vers Sion dans le Valais Suisse, il se trompe d’aéroport et de pays ! Il entame sa descente sur Aoste en Italie. Il y a 50 kilomètres entre les deux terrains et malgré les remarques du copilote, il se butte et continue sa descente. En approche finale, les passagers commencent à voir des panneaux de signalisation routière en italien et l’un d’eux filmera même la scène. Juste avant de poser, le commandant de bord comprend son erreur et remet les gaz. Il atterrit à Sion et explique l’erreur aux 30 passagers. Par contre, ni la compagnie, ni les autorités compétentes n’en sont informées.

Une autre fois, c’est un copilote qui le voit réaliser une approche selon une technique personnelle très dangereuse. Alors que l’appareil est en approche aux instruments sur Lugano, un des terrains les plus dangereux de Suisse, il coupe les circuits breakers du GPWS et de l’alarme de survitesse. Puis, il affiche une vitesse verticale de -4’000 pieds par minute et laisse tomber l’avion dans le vide. Le copilote est inquiet, mais n’ose rien faire. L’appareil descend dans les nuages dans une zone très montagneuse des Alpes suisses et italiennes. Quand il sort de la couche, il est à 100 mètres de hauteur au-dessus d’un bras de lac de 3’500 mètres se trouvant dans le prolongement de la piste. Il continue le vol à vue et atterrit.

Les pilotes de Crossair accumulent les incidents et comportements dangereux, mais tout est couvert par une loi du silence où tout le monde trouve son compte. En 1991, alors qu’il est sur un contrôle en ligne et qu’il est sensé donné le meilleur de lui-même, ce pilote va ignorer pendant plusieurs minutes une instruction de limitation de vitesse donnée par le contrôleur aérien. Soudain, il se retrouve dans les turbulences de sillage d’un Boeing 747 le précédent et l’avion est sévèrement secoué. L’examinateur refusa de lui valider son test.

En 1990, une compagnie l’engage pour qu’il dispense une formation sur les systèmes du Saab 340. Alors qu’il est entrain d’expliquer le mécanisme de fonctionnement du train d’atterrissage, le copilote en formation lui demande ce qui se passe si ce dernier refuse de rentrer. Qu’à cela ne tienne, il lui fait une démonstration grandeur nature de la rentrée d’urgence. Par contre, contrairement à ses attentes, le train d’atterrissage rentre vraiment alors que l’avion est stationné au sol. Les occupants sont un peu secoués et l’appareil endommagé au-delà de toute réparation.

Chez Crossair, quand furent achetés des DC-9 capables de transporter plus de 160 passagers, il fut d’emblée pressenti pour commander l’un d’eux. Là, ça ne passe plus. Les formateurs qui le prennent en charge refusent de lui faire valider sa transition. Il est incapable de comprendre le fonctionnement de l’appareil, incapable de coordonner sa gestion et ses décisions, il est tout simplement incapable de piloter un DC-9. La compagnie lui paye des heures en plus, mais rien n’y fait. Le projet est annulé.

En été 1995, on tente encore une fois de le faire passer sur DC-9. Les instructeurs vont s’acharner pendant plus d’un an, mais sans succès. En plus de difficultés particulières à ce type d’avion, le pilote a des problèmes plus généraux. Il ne peut pas avoir une action coordonnée, ni prendre une décision convenable à la situation.

Après ce double échec, on le remet en ligne sur des avions qu’il sait piloter déjà : Saab 340 et plus tard des RJ80/100.

Contrairement à des compagnies comme Air Algérie, où n’importe qui peut rentrer comme pilote s’il a assez de piston, Crossair soumet les candidats pilotes à des tests d’entrée. Cette sélection est longue et compliquée et frise l’ésotérisme. On va jusqu’à leur fournir une boite avec des lumières sous forme d’étoiles, de carrés ou de demi-lunes et on leur donne des blocs taillés qu’on leur demande d’introduire dans la boite susmentionnée. Ce jeu, plus proche du zoo pour primates que du jardin d’enfants, se fait sous le regard de psychologues attentifs. Il n’y a pas intérêt à se foirer !

Le 24 novembre 2001, c’est le jour du drame. Un système biaiseux depuis longtemps produit un bébé monstrueux. L’Avro 146 décolle de Berlin à 21 heures. C’est un quadriréacteur. Le commandant de bord est qualifié dessus depuis 5 mois seulement. A force de le pousser, on a fini par le caser à gauche dans un avion à réaction. A bord ce jour là, il y a 28 passagers et 5 membres d’équipage. Le copilote est un jeune de 24 ans qui n’a pas encore fini sa formation. Son instructeur c’est le commandant de bord, c’est avec lui qu’il vola la veille pour le compte de l’école. Autant dire qu’il ne faut pas trop compter sur lui pour équilibrer le comportement irresponsable de ce dernier.

Vers 22 heures, commence l’approche sur Zurich. Les nuages touchent le sol et la visibilité est très dégradée. La piste en service, la 28, n’a pas d’ILS, mais un VOR/DME. Autant le dire tout de suite, tous les indicateurs du CFIT sont au rouge.

Le METAR reçu lors de la descente indique une visibilité de 3’500 mètres. Cette valeur, même si elle est correcte selon les textes, elle en reste néanmoins trompeuse. D’après l’OACI, la visibilité est la plus grande (bien la plus grande) des deux valeurs suivantes :
– la distance horizontale maximale à laquelle un objet noir de dimensions convenables et proche du sol peut être vu et reconnu quand il est observé sur un fond clair.
– la distance horizontale maximale à laquelle on peut voir et identifier une source lumineuse d’environ 1000 Candelas contre un arrière plan sombre.

1000 Candelas, c’est les phares d’une voiture. Par contre, que faire quand la visibilité n’est pas la même dans différentes directions ? D’après l’OACI, c’est la visibilité minimale qu’il faut considérer. Par contre, de nombreux pays considèrent cette approche comme trop restrictive et lui préfèrent ce que l’on appelle « la visiblité prédominante ». C’est-à-dire la visibilité maximale atteinte sur au moins 180 degrés continus ou non d’horizon. En Suisse, c’est la norme adoptée, mais ceci est connu des pilotes même si ça continue à leur réserver des surprises parfois. En cas de nuages bas, il n’est pas impossible d’avoir des visibilités nulles dans certaines directions d’approche alors que les METAR continue à annoncer plusieurs milliers de mètres de visibilité sur le terrain.

Ce soir, malgré les 3’500 mètres publiés, un premier avion atterrit sur la 28 et son équipage trouve que les conditions ne sont marginales et en informe le contrôleur aérien. Les pilotes de l’Avro, qui sont sur la même fréquence, entendent cette information et continuent leur approche.

Aux commandes, il y a le copilote. Le commandant de bord supervise et s’occupe des communications. En approche VOR/DME, l’avion descend selon un profil qui ressemble à un escalier. Plusieurs points sont définis par leur distance et à chaque fois que l’appareil les survole, il doit descendre et se mettre en pallier en attendant le point suivant. La dernière marche se fait à une altitude appelée MDA. Une fois qu’il est à cette altitude, le pilote continue à chercher la piste mais au plus tard jusqu’à un point appelé MAP. Si la piste est vue avant ce point, la descente et l’atterrissage se poursuivent, autrement, il faut remettre les gaz. Bien sûr, de nombreux pilotes ont la tentation d’aider un peu le sort et descendant sous la MDA pour augmenter leurs chances de voir la piste. C’est ce que fait le commandant de bord ce soir là.

En effet, alors que le copilote se rapproche la MDA il ne voit rien du tout. Si ça ne tenait qu’à lui, il remettrait les gaz et irait poser dans un aéroport de déroutement quitte à ce que la compagnie paye la nuit d’hôtel aux passagers. Le commandant de bord ne l’entend pas de cette oreille. Pour lui, le plus important est de rentrer vite à la maison. De plus, dans son état de fatigue, il n’a plus vraiment envie de faire durer. Il faut atterrir même en prenant un peut de liberté avec les procédures en vigueur.

A 22:06:10, le commandant prend les commandes et sans la moindre visibilité, il descend sous la MDA. Terrorisé, le copilote marmonne « deux, quatre ». Deux, quatre, zéro, zéro pieds, 2’400 pieds, c’est la MDA sur l’approche 28 de Zürich. Le commandant déclare pour lui-même :
– Il a dit qu’il a vu la piste à deux nautiques…

Il fait référence au pilote qui a atterrit précédemment et qui avait déclaré à la radio avoir vu la piste à cette distance. Le copilote ne dit plus rien mais le radio altimètre annonce, par le biais d’une voix synthétique, le passage des 500 pieds de hauteur. A 22:06:32, la même voix annonce 300 pieds mais la piste n’est pas encore en vue. Le commandant de bord se pose la question à haute voix :
– Est-ce que l’on ne devrait pas faire une remise de gaz ?

Par acquis de conscience, il laisse encore passer deux secondes, puis comprend qu’il n’est pas possible d’arriver à l’heure ce soir. Le copilote reprend espoir et l’encourage à annuler l’atterrissage. Enfin, il pousse les manettes des gaz et tire sur le manche. L’aiguille du variomètre, qui indiquait 1’200 pieds par minute de taux de chute, commence à revenir vers zéro quand l’appareil se prend dans les arbres. Le choc est très violent, les ailes s’arrachent et le kérosène provoque une boule de feu qui engloutit l’avion avant que celui-ci n’arrive à l’arrêt complet. Sept passagers assis tout à l’arrière ainsi que deux hôtesses sont éjectés et auront la vie sauve. Tous les autres occupants, y compris les pilotes, sont tués par le choc et leurs corps sont consommés par les flammes. Il faudra utiliser des méthodes génétiques pour identifier toutes les victimes.

Dans l’axe d’approche de la 28 à Zürich, il n’y a pas de lac, mais un bosquet d’arbres. En tentant son truc de Lugano sur ce terrain, le commandant de bord a précipité son appareil dans le décor. L’accident fit 33 morts.

Crash de l’Union des Transports Africains vol GHI 141

Malgré tout l’attention portée aux problèmes, les compagnies les plus sérieuses peuvent se retrouver, le temps d’un vol, soumises à des situations divergentes. Dans certaines compagnies, les données de base rendent le chaos systématique et inévitable. Le manque de moyens financiers et techniques favorise une culture d’entreprise basée sur l’approximation et la prise de risque constante. Le système fonctionne grâce à la chance et à la faculté des avions de pardonner de nombreux écarts. Même s’il touche la caricature, le vol GHI 141, qui se termina dramatiquement, illustre bien ce phénomène.

 

crash Boeing 727 UTA
Cockpit du 727 d’UTA
Le Boeing 727 numéro de série 21370 a eu une longue histoi-re depuis sa sortie des usines de Seattle en 1977. Il vola de longues années sous les couleurs d’American Airlines parcou-rant les USA dans tous les sens. En 2001, après près d’un quart de siècle de bons et loyaux services, il fut remisé dans le désert Californien. L’aéroport de Mojave est un cimetière d’avion. La majorité y arrivent par les airs et repartent sous forme de ferraille à recycler. On y trouve des Boeing 747-100, des Airbus A300 et plein d’autres appareils civils ou militaires en fin de vie. Ce 727 y passe quelques mois avant d’être ra-cheté par une société de Floride dont le siège social est aux Iles Vierges et les bureaux aux Emirats Arabes Unis. Au début 2003, il est remis en service et la FAA donne son accord pour qu’il quitte les Etats-Unis par les airs. Il part en Afghanistan où la compagnie nationale fait encore voler ce genre d’objets. Après un semestre à faire Kaboul – Istanbul – Moscou, l’avion est envoyé vers un autre client, la compagnie Alpha Omega du Swaziland. Ceci est l’un des pays les plus petits et les plus pauvres d’Afrique. L’espérance vie n’y dépasse guère les 32 ans et ce n’est pas que pour des problèmes d’avions.

Après quelques vols, Alpha Omega décide que c’est plus ren-table de sous-louer l’avion que de l’exploiter directement. Elle y rajoute un équipage composé sur le tas et le loue à l’Union Africaine des Transports pour des contrats de 30 jours renou-velables. Cette Union, n’a aucun avion, si ce n’est le 727 qu’elle vient de louer.

Il n’y a pas de date de péremption pour un avion tout comme il y en point pour les autres véhicules. Par contre, plus il vieillit, plus il va demander des opérations de maintenance, de contrôle et de remise aux normes. Ceci exige que les opéra-teurs soient techniquement et financièrement capables d’assumer leurs responsabilités. Paradoxalement, les avions en bout de potentiel se retrouvent chez les compagnies les plus faibles. De plus, un ancien Boeing ou Airbus obtenu sur des réseaux obscurs, voir louches, ne présente aucune garan-tie de fonctionnement sûr.

L’équipage fourni par le loueur est étonnant. Le commandant de bord a une licence de pilote de ligne délivrée par la Libye et non reconnue par la Guinée. Il ne peut donc pas travailler dans ce pays. Il a une licence de pilote professionnel délivrée au Royaume Uni mais elle ne permet pas d’occuper un poste de commandant de bord sur un avion de plus de 5700 kg. Son parcours de vol dans les jours et semaines précédent l’accident est inconnu. Le copilote est exactement dans la même situation. Son expérience professionnelle est inconnue. Le mécanicien de bord avait une licence Libyenne également et venait de rejoindre la compagnie.

Il y avait aussi une chef de cabine et trois hôtesses de l’air qui travaillaient sans contrat. A chaque vol, il y avait aussi deux mécaniciens et un convoyeur. Ce dernier, se déplaçait tou-jours avec une mallette d’argent liquide pour payer comptant le carburant les et taxes d’aéroport. (Par exemple, lors des derniers mois d’existence de Swissair, la compagnie avait perdu tout crédit et ses commandants de bord devaient tou-jours voyager avec de fortes sommes d’argent pour payer les services reçus dans les aéroports.)

L’appareil avait une configuration de 140 sièges, mais trans-portait un nombre plus important et indéterminé de personnes. Il n’y avait pas d’attribution de places et de nombreuses personnes réussissait à embarquer sans cartes d’accès. Certains passagers revendaient aussi leurs cartes d’accès à des per-sonnes pressées.

Le 25 décembre 2005, le 727 UTA devait faire un long vol qui allait le conduire de Conakry, capitale de la Guinée, jusqu’à Dubaï, un des sept Emirats Arabes Unis. Ce voyage était organisé chaque semaine et faisait escale à Cotonou, au Bénin, à Koufra au milieu du désert Libyen et à Beyrouth au Liban. A chaque arrêt des passagers débarquaient ou étaient ajoutés.

On avait posé un gros autocollant aux couleurs d’UTA sur la carlingue, mais on pouvait lire par transparence le logo d’American Airlines. Tout dans l’exploitation et la gestion de cet avion respirait le drame au ralenti. Pourtant, on y trouve des passagers très sérieux y compris du personnel de l’ONU.

Tout se passe bien jusqu’à l’escale de Cotonou. Des passagers embarquent en surnombre. Certains viennent de l’aéroport et d’autres d’un autre avion qui arrive de Lomé au Togo. Ils portent de grandes quantités de bagages qu’ils introduisent en cabine. Le copilote s’en inquiète et essaye de les en séparer et demande au personnel au sol de tout mettre en soute. Quand celle-ci est ouverte, il s’avère qu’elle est pleine à ras bord et qu’il y a pas moyen d’y rajouter la moindre valise. L’avion est nettement surchargé, mais il n’y a aucun calcul de charge de fait et personne ne sait s’il décollera ou pas.

Le commandant de bord se rend au bureau de piste pour déposer son plan de vol, mais ne s’intéresse pas au dossier météo. A son retour, il règle le problème de la surcharge en annonçant que le décollage se fera avec 25 degrés de volets. Ce réglage maximal permet un décollage sur la plus courte distance possible. Par contre, aucun calcul de centrage de ne se fait. La répartition des charges sur un avion influence la position de son centre de gravité. Sur un appareil long comme le 727, une hôtesse de l’air qui se déplace avec un chariot provoque un déroulement de trim dans le poste de pilotage ! Pour cette raison, avant chaque décollage, les charges placées dans l’avions sont rentrées dans un document qui donne graphiquement la position du centre de gravité ainsi que la valeur à placer dans l’index du plan horizontal réglable (PHR). Quand tout est fait comme il faut, lorsque le pilote tire sur le manche au décollage, l’avion répond normalement. Autre-ment, l’appareil peut présenter des caractéristiques dangereuses. Par exemple, si le centre de gravité est trop à l’arrière, dès la mise en puissance l’avion a une forte tendance à cabrer et les pilotes doivent pousser sur le manche pour évi-ter qu’il ne décolle trop tôt. Au contraire, si le centre de gravité est trop à l’avant, l’avion ne répond pas quand le manche est tiré. Un mauvais centrage découvert doit inciter les pilotes à annuler le départ et à revenir sur le parking pour vérifier la ré-partition des charges.

Le 727 est très gourmand en piste. A pleine charge, il n’est pas inusuel de le voir consommer la quasi-totalité d’une piste de 3000 mètres pour quitter le sol. L’altitude du terrain et la température augmentent sensiblement ces distances. A Coto-nou, la piste ne fait que 2400 mètres et la température est de 32 degrés en cette journée de Noël.

Quand l’avion commence à rouler, une partie des passagers ne sont pas encore assis. Il y a de la bousculade parce que des personnes qui voyageaient en groupe cherchent à rester ensemble. Par manque de place, certains passagers sont même assis sur les sièges du personnel de cabine. Une hôtesse de l’air confie ses appréhensions à une collègue. Elle en est sûre, c’est plus qu’un pressentiment, l’avion ne décollera pas. Elle n’est pas la seule, pendant le roulage, le copilote dé-clare aux autres :
– Si on arrive à décoller aujourd’hui, je te dis, ça sera une per-formance ! Chaque passager est monté avec une valise de vingt kilos vous verrez si on décolle ou si on tombe dans la mer !

Le directeur général de la compagnie voyage en poste et avoue son impuissance :
– Je vais les gronder à Beyrouth, je ne peux rien faire mainte-nant mais au retour on fera autrement.

Le moment fatidique arrive et le 727 entre en piste. Le copilote est aux commandes. Il freine complètement tandis que le mécanicien de bord se penche sur les manettes et affiche la puissance maximale sur les trois réacteurs. Le commandant de bord rassure :
– Vas doucement avec les freins, relâche lentement, c’est très gênant pour les passagers. Lentement, relâche lentement.

Libéré de l’emprise des freins, le Boeing se met à accélérer. La piste défile, mais la vitesse augmente très mollement. Quand le copilote tire sur le manche, l’avion fait mine de ne pas réagir. Puis, degré par degrè, il se cabre. Les roues quittent le sol de un puis de deux mètres et l’avion cesse de monter. Planant sur l’effet de sol, il passe le bout de piste. Dans le prolongement, il y a une baraque technique puis un mur en béton. Ces derniers ne sont plus aux normes OACI, mais les autorités aéroportuaires avaient jusqu’en 2010 pour les enlever.


crash Boeing 727 UTA
Petit bâtiment en bout de piste.
Coupé en deux par le choc. Un employé s’y trouvait
 

 

 


crash Boeing 727 UTA
Mur détruit par le train d’atterrissage
 

 

 


crash Boeing 727 UTA
crash Boeing 727 UTA
Le train d’atterrissage
 

 

 


crash Boeing 727 UTA
Vis sans fin du stabilisateur de profondeur.
Elle garde la position du réglage même après un crash.
 

 

Le train d’atterrissage est le premier à taper contre la cabine en bout de piste. Elle est littéralement coupée en deux. Un technicien y travaillait, c’est par miracle qu’il eu la vie sauve. L’avion percute également le mur en béton et, comme prévu par le copilote, il tombe à la mer et se fracture en plusieurs morceaux.

A l’impact, les passagers non attachés volent dans la cabine. Au loin, les techniciens présents dans la tour voient l’avion disparaître dans un nuage de poussière et de fumée. De par-tout, des milliers de personnes affluent vers la plage pour aider d’éventuels survivants. L’attention est louable, mais le chaos perturbe l’arrivée des pompiers et secours médicaux.

Il y a 138 morts, en majorité des Libanais rentrant au pays. Le copilote décède ainsi que la moitié des dix membres d’équipage. Le commandant de bord est gravement blessé mais survivra et aidera les enquêteurs à établir les circonstances de cet accident annoncé. Il y a à peine 17 survivants qui se trouvaient, pour la majorité à l’arrière de l’appareil ou vers les zones de rupture de la carlingue.

L’Union Africaine des Transports a cessé toute activité mais les mécanismes ayant conduit à ce crash existent toujours. Ceci est une menace pour les populations locales ainsi que pour les touristes occidentaux qui peuvent à tout moment se retrouver pris dans un tel engrenage.

(Extrait du livre Sécurité Aérienne, Amine MECIFI, à paraitre en septembre 2007)

Accidents Dus au Stick Shaker

Un avion de ligne peut survivre à des pannes inimaginables. On a vu des avions revenir sur le terrain avec des réacteurs en panne, des bouts d’aile manquants ou des pans de carlingue arrachés. Par contre, un appareil ne survit pas à une panne de l’alarme de décrochage ! Il suffit que cette alarme soit disfonctionnelle et envoit une alerte intempestive et c’est le crash pratiquement à coup sûr !

A une exception près, le stick shaker n’est pas un instrument de pilotage. Il s’agit d’une alarme qu’un pilote ne doit pas entendre de toute sa carrière. Si jamais elle se déclanche, il est drillé pour pousser sur le manche et de mettre à fond les gaz. Cette réaction n’est pas réfléchie et il n’y a pas intérêt à ce qu’elle le soit. Le réflexe est médullaire et rapide et c’est ainsi qu’il doit être.

Cependant, se pose naturellement la question des alarmes intempestives. En effet, Si le manche est poussé vers l’avant, il y a rapidement survitesse et perte de hauteur. Ceci est d’autant plus embêtant que lorsque cet appareil a un problème, il a tendance à se manifester dès le décollage.

Voici une série de 2 crashs dus à ce problème. Le premier est un miracle et le second une tragédie.

1 – TWA 843
Cet accident est absolument unique dans l’histoire de l’aviation. Le L-1011 de TWA s’est crashé au décollage de l’aéroport de New York Kennedy International (KJFK). Il transportait 292 personnes et il eut 292 survivants ! C’était le 30 juillet 1992.

Le 843 de la TWA était un vol transcontinental à destination de San Francisco. Il était programmé pour décoller vers 18 heures locales depuis la piste 31. Cette piste, avec ses 4400 mètres, était la plus longue piste civile au monde. La plus longue, jusqu’à nos jours, elle celle de Groom Lake (Area 51) qui fait presque le double et qui est située dans une base secrète dans le Nevada. Seul le Concorde accélérait depuis le début de cette piste. Les autres avions, y compris le vol 843, y entaient depuis l’intersection TO et avaient une longueur très confortable de 3500 mètres. Ceci a joué un rôle très important dans la suite des événements. Si ce crash avait eu lieu ailleurs, il se serait certainement mal terminé.

L’avion s’aligne et commence à accélérer pour le décollage. Dès ce instant, un premier problème va surgir. Ce problème a probablement sauvé beaucoup de vies même si dans l’absolu il n’a rien avoir avec la suite. En effet, l’avion décollait à pleine charge et avec le plein de carburant. Plus que le plein, il y avait même un peu de trop plein qui s’évacuait vers l’extérieur depuis le bout des ailes. Ce carburant tombe au sol lors de l’accélération et va jusqu’à prendre feu. Un des passagers assis près du hublot tout à l’arrière, remarque les flammes et détache sa ceinture, saute dans l’allée principale et se met à hurler !

C’est peut être juste une hypothèse, mais cet incident a mis les gens en alerte et tous pensaient que quelque chose de grave allait arriver quand effectivement elle arriva. Le niveau d’alerte étant au maximum, l’accident qui allait suivre, ne prit pas les gens par surprise.

C’est le copilote qui est aux commandes pour un décollage facile. L’accélération se passe bien et sans le cockpit, personne n’est au courant du feu et de la panique qui se déclare.

Le commandant qui surveille le badin annonce V1; puis VR. Le copilote tire sur le manche et le Tristar commence à se cabrer. Il est lourd et les choses se passent lentement. Trop lentement dans l’esprit des pilotes. Les roues qui tournent à une vitesse folle s’arrachent péniblement du sol. L’avion commence à peine à l’elever quand retentit l’alarme de décrochage.

Le copilote annonce le décrochage et va faire quelque chose qui lui sera reproché par le suite. Deux secondes après avoir annoncé le décrochage, il annonce : “You got it!” Il va cesser de piloter l’avion et oblige le commandant de bord de sauter sur le manche. Ce dernier répond “OK” et prend les commandes tout en se demandant ce qui se passe. Deux secondes plus tard, il va s’écrier : “Oh, Jesus!”.

La situation est grave et le copilote y va de son conseil: “poses-le !” Immédiatement, le mécanicien de bord assis derrière le commandant lui lance un conseil tout opposé : “décolles ! décolles !”.

Le commandant qui a pris les commandes alors qu’il ne s’y attendait pas pose la question : “c’était quoi le problème ?!” Le copilote s’écrie : “On a un décrochage !”

Le tout se passe très rapidement, l’avion reste en l’air pendant 6 secondes seulement et puis le commandant de bord décide que l’avion n’ira pas plus loin et que plus vite il le posera au sol, moins haute sera la chute. Et il en fut ainsi. Le manche est poussé et l’avion retombe lourdement sur la piste puis les freins et les inverseurs de poussée sont activés au maximum.

La piste semblait suffisante, mais l’avion ne ralentit pas aussi bien que prévu ! Alors qu’il reste 500 mètres de piste, le commandant voit encore 100 noeuds d’affichés au badin. Pour ajouter à leur angoisse, le contrôleur aérien les informe qu’il voit un feu important qui suit leur appareil.

La sortie de piste est inévitable. Heureusement, le commandant a encore un contrôle directionnel. Il évite les barrières en bout de piste et dirige son avion vers la gauche où terrain gazonné se profile. A peine le nez de l’avion pointé vers cette direction, qu’un premier “boum” est ressenti. C’est le train d’atterrissage avant qui est cassé. L’avion fonce dans le champs.

Après quelques rudes secousses l’avion finit par s’arrêter. Le mécanicien de bord arrête tous les moteurs et déclanche tous les extincteurs à sa disposition. Le commandant de bord prend le PA (interphone pour annonces aux passagers) et ordonne l’évacuation immédiate de l’appareil.

Heureusement, après tant de déboirs, l’évacuation est un modèle du genre. Certaines portes sont ouvertes puis refermées parce qu’elles donnent sur du feu. Les passagers arrivent à quitter l’avion par les portes avant. Le commandant est le dernier à évacuer après avoir vérifié que tout le monde avait réussi à sortir.

Les pompiers arrivent en deux minutes, mais c’est trop tard pour l’appareil qui est consommé par les flammes sous leurs lances impuissantes.

Il y a dix blessers lègers dus à l’évacuation. Le cas le plus grave concerne un bras cassé. Les jounaux titrent “Miracle” ou “La Grande Evasion”. Le drame a été évité de peu, mais le NTSB prend l’enquête très au sérieux. Il s’avère que l’avion n’avait au problème et qu’il aurait suffit de poursuivre la manoeuvre pour qu’il décolle normalement ! Plusieurs test sont faits en vol et au sol rien ne permet de dire que les performances étaient plus faibles que ce qu’elles auraient du être. Le copilote a abandonné les commandes sans la moindre concertation et ceci contre toute logique ou procédure habituel. C’est pourtant un homme expérimenté (plus de 15’000 heures de vol). Lui et le commandant de bord était positivement convaincus que l’avion n’allait jamais prendre l’air et qu’il était entrain de décrocher. Cette impression était subjective. Le copilote, au moment où il a senti le vibrations du stick shaker, a eu le reflexe de relacher la pression sur le manche. Ceci a réduit le facteur de charge et a donné l’impression que l’avion ne montait pas, voir qu’il s’enfonçait.

Le défaut de base venait de la sonde et du système de calcul d’incidence (AOA Angle Of Attack) qui n’était pas conçu pour éviter les fausses alertes. La maintenance de la TWA a aussi été mise en défaut sur ce point précis.

2 – Kenya Airways Vol 431
Le 30 janvier 2000, l’incident du stick shaker frappe encore. Cette fois, la piste est plus courte, il n’ y a pas de champs, mais la mer et bout et il fait nuit. L’accident est la reproduction du précédent, mais dans des conditions moins optimales.

L’Airbus A310-304 de Kenya Airways réalise le vol 431 qui doit relier ce soir là Abidjan à Lagos et puis Nairobi au Kenya. Ce vol doit transcontinental est prévu pour durer toute la nuit. A 21:08 heures, le pilote reçoit l’autorisation de décoller et le 5Y-BEN commence à accélérer sur la piste. C’est le copilote qui est aux commandes. Le commandant de bord s’occupe des communications et du réglage de la puissance et des instruments.

L’avion prend de la vitesse normalement et se cabre pour décoller. Deux secondes après que les roues aient quitté le sol, l’alarme décrochage retentit. C’est une fausse alarme, mais les pilotes ne sont pas payés pour analyser le bien fondé des alarmes décrochage, bien au contraire !
Le pilote aux commandes pousse sur le manche et l’Airbus commence à prendre de la vitesse tout en revenant vers le sol, ou la mer dans ce cas.

– Il se passe quoi ? demande le copilote

Au même moment, une voix synthétique égrenne la hauteur mesurée par le radio-altimètre : 200, 100, 50, 30…

Peu avant l’annonce des 50 pieds, l’alarme sonore du GPWS s’active : “Whoop! Whoop! Pull-up!” Le commandant de bord crie au copilote de tirer sur le manche et probablement qu’il tente de le faire aussi. Son ordre arrive 6 dixièmes de seconde avant l’annonce des 10 pieds, environ 3 mètres.

Une seconde après, c’est l’impact violent contre l’eau. L’avion est détruit sous le choc et seuls 10 survivants seront repêchés parmi les passagers. Les 10 membres d’équipage sont tués et le total le bilan s’établit à 169 victimes. Cher payé pour un avion qui avait juste une sonde défaillante.

Kenya-Airways-431

Effectivement, l’enquête menée par le BEA Français et les autorités Ivoriennes, démontrera que l’avion était correctement configuré, le carburant de bon qualité et les moteurs délivrant la puissance requise. Il aurait suffit de tirer sur le manche en quelque sorte.

Quand un pilote entend l’alarme de décrochage, il pousse sur le manche. L’avion s’enfonce et ceci est associé au décrochage et vient même le confirmer. L’impression de perte de portance est donc renforcée et le temps restant très court, ne permet pas d’établir la situation en comparant aux autres instruments.

A quoi sert l’alarme décrochage juste au moment du décollage ?
Mis à part à provoquer des crashs en cas d’anomalie, cette alarme ne sert pas à grand chose. En effet, les risques de décrochage réel lors du décollage sont très faibles. Sur les avions de ligne, en pratique, deux situations peuvent donner lieu à un décrochage:

– Mauvaise configuration volets/slats

– Cisaillement de vent

Dans le premier cas, les avions sont tous protégés par des alarmes de configuration. Si les volets/slats sont oubliés lors du décollage, l’avion ne va même pas décrocher, il va juste pas voler du tout. Au mieux, il pourra s’élever de quelques mètres pour mieux retomber. L’accident le plus typique est celui du Delta Air Lines Vol 1141. Le 31 août 1988 ce Boeing s’aligne et tente de décoller avec les volets totalement rentrés. L’alarme de configuration était hors service. Lors de la rotation, le stick shaker s’est activé et l’avion a fini par revenir heurter le sol. Il eut 14 morts et 94 survivants.

Un an plutôt, le 16 août 1987, le Northwest Airlines 255 décolle depuis L’aéroport de Detroit Metropolitan. Le DC9 transporte 155 personnes et à la mise en puissance, les volets et les slats sont rentrés. Le système d’alarme de configuration de décollage n’est pas alimenté en courant à cause d’un problème avec un fusible. L’équipage n’avait pas fait de check list. Les roues de l’appareil quittent le sol, mais celui-ci ne prend pas d’altitude. Il reste dans une position fortement cabrée avec le stick shaker actif. Il finit par heurter un pylone qui arrache une aile puis finit sa course sur une autoroute et une voie de chemin de fer. Il y a 154 morts dans l’avion et 2 morts au sol. Une gamine de 4 ans survit malgré de graves blessures.

Northwest-Airlines-255

Le 9 juillet 1982, un 727 de la Pan Am avec 145 personnes à son bord décolle de l’aéroport de New Orleans. Il montre de 100 à 150 pieds et le stick shaker se met en marche. Il s’agit d’un cisaillement de vent. L’appareil commence à perdre de l’altitude et la piste dessous se termine. Il heurte des arbres situés à 725 mètres après le bout de piste. La hauteur au moment de ce premier impact est de 50 pieds. Il continue à voler encore sur 680 mètres et finit sa course contre des maisons. Le bilan est de 153 victimes ! Tous les occupants de l’appareil plus 8 personnes au sol. L’alarme décochage n’avait apporté aucune aide. Heureusement, de nos jours, le risque de cisaillement de vent est de plus en plus maitrisé.

Lors du décollage, si un avion de ligne décroche, en général, il finit au sol.

Afin d’améliorer la sécurité, les compagnies aériennes devraient réfléchir aux points suivants:

– Améliorer la sécurité du stick shaker pour supprimer les fausses alertes (redondance des systèmes, contrôles systématiques…)
– Réfléchir à l’oportunité de le désactiver lors du décollage tout en améliorant les dispositifs d’alerte en cas de mauvaise configuration.
– Apprendre aux pilotes à reconnaitres les situations de décrochage et de non décrochage avec défaillance des instruments.

Le crash du vol ValuJet 592

Ce crash, l’un des plus horribles de ces dernières années, est malheureusement l’accident typique de notre époque. Il démontre à quel point la relation entre une compagnie aérienne et les marchés financiers peut être perverse et porteuse de danger.

C’est une ambiance estivale qui règne sur l’aéroport de Miami ce samedi 11 mai 1996. La météo est très douce pour la saison et beaucoup de gens ont choisi de faire le déplacement pour la fête des mères. Le vol 592 à destination d’Atlanta, en Géorgie, est programmé à 13 heures, mais déjà les écrans de l’aéroport annoncent qu’il partira avec au moins une heure en retard.

Au moment de l’enregistrement, 105 passagers se bousculent aux guichets de ValuJet. Sur le tarmac, des employés s’affairent autour de DC-9 arrivé en retard de son vol précédent. Tandis que l’équipage fait son briefing pour Atlanta, des employés de l’aéroport chargent le fret et les bagages dans les soutes avant et arrière. Rapidement, les passagers sont embarqués et l’avion s’ébranle avec trois quarts d’heures de retard sur son horaire.

Aux commandes, il y a deux pilotes de qualité. Le commandant de bord est une femme de 35 ans, elle s’appelle Candalyn Kubeck mais tout le monde l’appelle Candi. Cette californienne vole depuis son adolescence et totalise plus de 8’900 heures de vol dont pratiquement 1’800 heures sur DC-9. Passionnée d’aviation, elle aime son métier et connaît parfaitement sa tâche et son avion. A sa droite, il y a le copilote, Richard Hazen, 52 ans. C’est un homme très expérimenté. Il a servi dans l’Air Force comme mécanicien naviguant puis comme pilote. C’est le genre de personnes qu’on aime avoir avec soi quand les choses tournent mal.

Selon ses parents, Candi n’a jamais été rassurée par le DC-9. Ce n’est pas l’avion en lui-même qui lui posait problème, mais la façon dont il était exploité. ValuJet achetait de nombreux avions anciens et les rénovait en quelques semaines puis les mettaient en ligne. C’est un choix très périlleux que celui de faire voler des passagers sur des avions ayant une ou deux générations de retard. Ces appareils sont très problématiques. Les pannes sont nombreuses et les frais de maintenance explosent.

Quoiqu’il en soit, le DC-9 de ValuJet s’aligne sur la piste de l’aéroport de Miami International et prend son dernier envol. A son bord, il y a 110 personnes condamnées par la folie des hommes.

Trois minutes plus tard, l’avion passait les 10’000 pieds d’altitude quand soudain un bruit sourd se fit entendre. Les pilotes se regardent, ça ne leur inspire rien qui vaille. Douze secondes après, les ennuis, les vrais, commencent. Tout d’abord, une bonne partie de l’énergie électrique de l’avion s’en va brutalement. Une grande partie des appareils et instruments de bord s’arrêtent de fonctionner.

Les pilotes ne perdent pas leur temps à discuter la chose. Immédiatement, ils contactent la tour de contrôle et annoncent qu’ils ont besoin de faire demi tour immédiatement. Avant de poser la moindre question, le contrôleur répond :

– Bien reçu, tournez à gauche au cap 270, descendez à 7’000 pieds !

Au moment où l’avion commence à virer, des cris arrivent de la cabine des passagers : « Au feu ! Au feu ! Nous sommes en feu ! ».

– Nous pouvons savoir ce que vous avez comme problèmes ? demande le contrôleur
– Il y a de la fumée dans le cockpit et dans la cabine, répond le copilote

Les pompiers sont alertés et, toutes sirènes hurlantes, ils prennent place aux abords de la piste 12 de l’aéroport de Miami. Pendant ce temps, le contrôleur continue à guider l’avion en lui donnant des caps et des altitudes qui lui permettent de suivre le chemin le plus court vers le salut.

Hélas, les choses se précipitent alors que l’avion est à près de 7’000 pieds d’altitude. Il ne répond plus aux messages et bientôt disparaît des écrans radar alors qu’il survolait les Everglades.

Le NTSB fur rapidement informé de la situation. A 15 heures, une équipe d’enquêteurs était partie de Washington à bord d’un Gulfstream prêté par la FAA. A son arrivée, les services de secours locaux n’avaient pas encore retrouvé l’épave de l’avion.

Les Everglades sont une réserve naturelle de plus de 6’000 Km2. Même si un million de touristes y sont recensés chaque année, cet endroit demeure l’un des lieux les moins visitables de la planète. A perte de vue, s’étendent des eaux marécageuses et noires comme du café. Leur profondeur varie en fonction des saisons et des endroits. Elle peut aller de quelques centimètres à 5 ou 6 mètres, voir plus. Le fond est tapissé d’une couche organique de 10 à 12 mètres constituée de sédiments de plantes en putréfaction. A la surface, des plantes aux feuilles tranchantes comme des rasoirs dissimulent des crocodiles qui partagent les lieux avec des milliards de moustiques. Aucun bateau ou barque ne peuvent circuler dans ces eaux sans s’enliser ou bloquer leurs hélices en quelques secondes. Les seules embarcations qui peuvent braver cet espace sont des bateaux à fond plat propulsés par une hélice aérienne entraînée par un moteur très puissant.

Les secouristes ont un témoin qui a vu l’avion se faire littéralement « avaler » par les Everglades. Quelques débris sont retrouvés flottants, mais leur dissémination sur une très grande surface ne permet pas de localiser le point de l’impact. Pour compliquer le tableau, une large étendue d’eau est recouverte d’une nappe de kérosène qui risque de s’enflammer d’un moment à l’autre.

C’est dans cet endroit inhospitalier que commence l’enquête la plus difficile de l’histoire du NTSB.

Tout d’abord, le profil de la compagnie est établi. ValuJet a été créée en 1993 grâce à tour de table qui a réuni environ 4 millions de dollars. Avec cette somme dérisoire, son patron Lewis Jordan s’est donné des objectifs prétentieux : « nous allons devenir le Walmart des compagnies aériennes ». La croissance de la compagnie est fulgurante. De vieux appareils sont achetés partout aux Etats-Unis et à l’étranger et rénovés. Il s’agit de DC-9 pour la plus part, mais la compagnie ne dédaigne pas quant à elle, les 737-200. Environ 20 appareils viennent grandir la flotte chaque année. Le réseau s’étend et couvre bientôt tout le pays.

La technique du management est simple : du profit à tous les étages. Toutes les tâches sont déléguées à des entreprises de piètre qualité. Certains experts parlent de « compagnie virtuelle ». Les pilotes doivent payer 9’500 dollars pour pouvoir financer leur formation avant d’être engagés. La maintenance des vieux appareils est réalisée, en grande partie, par SabreTech, une entreprise de Miami qui emploi des ouvriers hispaniques dont une bonne partie ne maîtrisent pas suffisamment l’Anglais pour comprendre les manuels techniques des avions. De plus, dans les accords qui la lient à ValuJet, SabreTech doit payer 2’500 dollars d’astreinte par jour de retard sur les délais de rénovation des appareils. A son tour, SabreTech déléguait la plus grande partie de son travail à des tiers. Plus de 75% du personnel travaillant à la rénovation des DC-9 appartenait à d’autres entreprises sous contrat. Au niveau de ValuJet, personne ne savait qui faisait quoi ni comment.

Alors qu’ils doivent ressembler à des sales d’opérations, les locaux de SabreTech étaient tout le contraire. Un désordre abominable y régnait. Quand des clients avaient à visiter les installations, les employés balayaient les déchets et les cachaient au hasard des cartons. Aucun responsable de ValuJet n’aurait confié sa voiture à SabreTech ! Pourtant, cette entreprise avait pignon sur rue et toutes les accréditations pour faire le travail qui était le sien. Et comme le dit la formule habituelle : « Cette entreprise répond aux standard internationaux ».

La presse économique et financière adorait ValuJet. Les responsables de la compagnie étaient souvent interrogés et donnaient des leçons effrayantes sur ce que devaient être les entreprises de transport aérien de demain. Naturellement, quand ValuJet fut introduite en bourse, tous les cabinets et les conseillers étaient à l’achat fort. Le jour de l’introduction, l’action fit un bond de près de 30%. Le succès ne devait pas se démentir par la suite. L’action prit plus de 400% en un an et demi. ValuJet créait de la valeur pour les investisseurs et portait bien son nom. Honni soit qui mal y pense ! Les créateurs de l’entreprise se sentent pousser des ailes. A chaque pourcent de pris, c’est leur fortune personnelle qui augmente.

Les recherches se sont poursuivies pendant près de deux mois dans les Everglades. Jamais elles n’auront été aussi pénibles. Les plongeurs avaient une visibilité nulle. Ils fouillaient autour d’eux en tâtonnant avec les mains. Ils pouvaient tomber sur des pièces de l’avion, des morceaux humains, des crocodiles ou des mottes de plantes en putréfaction. A la surface, le personnel devait porter des tenues de protection biologique. La chaleur et le soleil limitaient l’intervention de chaque personne à quelques dizaines de minutes.

Petit à petit, les pièces du puzzle se reconstituent et se mettent à parler. Dans un hangar, une maquette en deux dimensions est réalisée. Il s’agit d’un dessin de la forme de l’avion matérialisée sur le sol. Les pièces sont identifiées et posées à l’endroit où elles devaient, à peu près, se trouver. Une fois ce travail long réalisé, les enquêteurs construisent une maquette en trois dimensions. Dans le même hangar, un vague DC-9 est réalisé en bois, fils de fer et grillage à lapins. Par la suite, les pièces sont accrochées à cette structure et l’avion se révèle peu à peu.

Les enregistreurs de vol sont retrouvés. L’écoute du CVR est particulièrement difficile. Alors que les micros de cet enregistreur se trouvent dans le cockpit, les cris des passagers sont nettement enregistrés. Les gens criaient « Au feu ! » sans que personne ne soit capable de les secourir. Le FDR, l’enregistreur des données de vol, présentait des anomalies dans ses indications. A un moment donné, juste après que le bruit sourd ait été entendu, le FDR enregistre une perte d’altitude de plus de 800 pieds et une perte de vitesse de 33 nœuds. Mais quelques secondes plus tard, ces chiffres reviennent à leurs valeurs précédentes. Ce fait, mystérieux au début, apportera de la lumière par la suite.

Il n’y a rien dans un avion qui puisse brûler en quelques secondes. Pour cette raison, dès le début, le NTSB s’intéresse au fret qui se trouvait dans la soute. L’une des palettes embarquées à l’avant appartenait à la compagnie aérienne. Elle comportait 2 roues d’avion gonflées à 3.5 bars ainsi qu’un mystérieux chargement dont la description est portée avec une écriture presque illisible sur les documents restées au sol : « Oxy cannettes vides ». Immédiatement, les enquêteurs débarquent chez ceux qui ont préparé cette palette, à savoir SabreTech.

Les Oxy cannettes vides s’avèrent être de vieux générateurs à oxygène ; vieux, mais loin d’être vides.

En fait, tous les avions du transport public sont obligés d’avoir de l’oxygène à bord pour alimenter l’équipage et les passagers en cas de dépressurisation. Dans la majorité des appareils, cet oxygène est produit par des cartouches qui réalisent une réaction chimique lorsqu’elles sont activées. Mais pas seulement de l’oxygène est produit, la réaction s’accompagne d’un fort dégagement de chaleur. Sur chaque cartouche, un texte entièrement en majuscules averti l’utilisateur : « ATTENTION : L’ACTIVATION DE CE GENERATEUR PROVOQUE UNE ELEVATION DE TEMPERATURE QUI PEUT ATTEINDRE 260 DEGRES. ». Quand il est monté sur l’avion, chaque générateur est relié à un masque par un tube et un fil. Le tube permet le passage de l’oxygène alors que le fil s’accroche sur le système d’armement de la cartouche. Quand le masque est tiré, une petite charge explose dans la cartouche et une réaction chimique rapide commence. Quand les cartouches à oxygène sont entreposées, un bouchon en plastique jaune cache le mécanisme d’activation qui est très sensible aux chocs. Tellement sensible, qui si on fait tomber tous les masques d’un avion, certains générateurs vont s’activer rien qu’avec la tension provoquée par la chute du masque qui pourtant est très léger. Le bouchon de protection est enlevé et jeté une fois la cartouche mise en place. Un générateur est garanti 12 ans par McDonnell Douglas mais il peut fonctionner bien plus tard.

Parmi les tâches de SabreTech, était inscrit le remplacement de toutes les cartouches d’oxygène arrivées à expiration. Cette entreprise, tout comme votre mécanicien de quartier, n’avait jamais réalisé ce genre d’opération. Néanmoins, les techniciens consultent les manuels et commencent à retirer les cartouches des 3 avions que ValuJet leur a confiés. Plus de 140 seront déposées et empilées dans des cartons. L’un des employés va quand même s’inquiéter de cette manipulation à la légère et en parle à son chef de service. Ce dernier lui répondra qu’il ne dispose pas de bouchons en plastique et qu’en tant que « consommables » c’est à la compagnie aérienne de les fournir, pas à eux. L’employé demande alors s’il peut utiliser les bouchons qu’il peut récupérer sur les nouvelles cartouches mises en places. Refus de son supérieur.

Plus tard, devant le NTSB, le supérieur en question niera avoir jamais eu cette conversation.

Le piège qui va se refermer sur 110 personnes est en construction. Chacun y apporte sa contribution.

Quelques jours plus tard, nous sommes au début du mois de mai 1996 et afin de diminuer le désordre ambiant, un employé est désigné pour emballer les cartouches périmées en vue de leur expédition par avion à ValuJet à Atlanta. Cet employé va les déposer au fond d’un gros carton, les unes à la suite des autres. Précisons, c’est-à-dire, que le dispositif de mise à feu de chaque cartouche était en contact avec l’arrière de la cartouche suivante. Par acquis de conscience, il recouvre l’ensemble de plastique à bulles puis referme le carton. Il y aura 5 cartons de cette nature.

Par la suite, un ballet d’étiquettes va se dérouler. Que noter sur les cartons ? Tout le monde sait que le transport des produits chimiques, et à plus forte raison l’oxygène, est sévèrement réglementé à bord des avions. Pour éviter les ennuis, le premier employé va marquer « pièces d’avion » sur chaque étiquette.

Le 8 mai, lors de la préparation du chargement pour le transport, les étiquettes changent encore. Un responsable des expéditions notera « Cannettes à Oxygène – vides ». Par la suite, un autre responsable, vient effacer les dernières lettres du mot « Oxygène » puis renforcer le mot « vide ». Le texte final sera « Cannettes Oxy – vides ». La seule chose dont on n’a pas envie chez SabreTech, c’est que ces cartouches soient refusées à l’aéroport et qu’elles reviennent chez eux encore.

Lors du chargement de l’avion, un manutentionnaire entend un bruit de métal qui résonne quand les cartons sont secoués. Il n’y fera pas attention. Les deux roues sont chargées puis les cartons rangés dessus et la porte cargo refermée.

Lors de l’enquête, le NTSB acquiert un lot de ces cartouches similaires ainsi que des roues de DC-9. Le chargement de la soute avant est reproduit à l’identique et de nombreux tests sont réalisés. A l’aide d’un fil, les enquêteurs activent l’un des générateurs et attendent pour voir ce qui se passe. Dans les deux premiers tests, rien de grave ne se passe. Une simple fumée blanche sort des cartons et s’arrête d’elle-même. Par contre, les essais suivants sont effrayants. Dix minutes après l’activation d’un seul générateur, la température de la palette reconstituée est de 815 degrés. Onze minutes après l’activation la température dépasse 1’540 degrés. Elle continue sa montée vertigineuse et trente secondes après ce point, elle est à 1’800 degrés. L’instrument ne peut pas mesurer plus. Enfin, 16 minutes après le début de séquence, le pneu déposé sous le chargement de cartouches explose en créant une forte onde de pression.

Goodyear analyse refait des expériences similaires et analyse les pneus retrouvés et confirme leur explosion suite à une forte chaleur. Ceci vient corroborer les données du FDR. En effet, les variations brutales sur les données de la vitesse et de l’altitude viennent de la variation soudaine et temporaire de la pression dans la l’avion suite à l’explosion du pneu. Les tubes des sondes passent tout près du lieu de l’explosion et l’onde de choc suffit à y provoquer d’amples variations de pression.

L’étau se referme gentiment sur les responsables cet immense gâchis, mais les souris quittent déjà le navire. Avant la fin de l’enquête, les fondateurs de l’entreprise commencent à vendre leurs actions. Leur porte-parole affirme que ceci n’a rien avoir avec le crash, mais seulement une redistribution de capitaux. Timothy Flynn, l’un des fondateurs, vend plus de 1.5 millions d’actions dans les jours suivant le drame. D’autres fondateurs suivent son exemple avant que les révélations accablantes n’apparaissent au grand jour.

Les agréments de ValuJet et de SabreTech sont révoqués par la FAA et tous les avions de la compagnie bloqués au sol dès le mois de juin.

La modélisation du crash avance à grands pas et, enfin, on commence à en savoir plus sur ce qui s’est passé. Le vol a duré 10 minutes, la cartouche qui a enclenché le processus a du s’activer par un choc à un moment donné avant le décollage mais au plus tard, pendant celui-ci. Une forte fumée a commencé à se dégager, mais à l’insu des pilotes. En effet, malgré la recommandation du NTSB, la FAA n’avait jamais jugé utile d’imposer des détecteurs de fumée dans les soutes des avions de ligne. Certains en comportaient, mais pas le DC-9. Le détecteur de fumée prévient le pilote dès que le feu se déclare et parfois même avant. Sans cet appareil, le pilote n’aura conscience du feu que lorsque celui se sera propagé et causé des dommages et des fumées qui arrivent en cabine. Dans le cas de ValuJet, l’équipage n’a eu que 12 petites secondes entre le premier signe alarmant (l’explosion du pneu) et la dégradation de la contrôlabilité de l’appareil.

Les expériences ont démontré que si le DC-9 disposait d’un détecteur de fumée, jamais le crash ne se serait passé. Ceci a poussé le NTSB à classer comme paramètre causal le refus de la FAA d’imposer des détecteurs de fumée à bord des avions de ligne. Il est très important de souligner cette première. Le NTSB a souvent critiqué la FAA ou cité son laxisme dans la rubrique des paramètres aggravants, mais c’est la première fois que la FAA était expressément citée comme paramètre causal en même temps que le feu.

Le feu qui se déclara dans la soute fut un véritable enfer. Il faut rappeler que les feux qui se passent atmosphère enrichie d’oxygène sont d’une force qui dépasse notre entendement. Ainsi, une cigarette peut se consumer entièrement en quelques secondes et avec une flamme si vive qu’on peut s’en servir pour percer une tôle. Un simple croissant peut prendre feu puis exploser comme s’il était imbibé d’essence !

On pourrait s’arrêter à ce point du récit et sauter directement à l’étape où l’avion gît dans les marécages. Mais on ne va pas occulter la souffrance des gens. Des personnes ont vécu l’horreur et il ne faut pas compter sur cet ouvrage pour en faire abstraction. Puis, on dit que des fois il faut mettre leur nez dans leurs excréments aux chats pas propres afin qu’ils perçoivent le message et comprennent qu’il y en a assez avec ce genre de saletés. Peut être que ce système marche avec les compagnies aériennes ?

La fournaise est juste sous les sièges des passagers et la moitié gauche du plancher s’effondre. Les passagers de gauche sont brûlés sous les yeux des passagers de droite alors que le plancher continue à fondre. La situation s’éternise pendant plus de trois minutes. Des cris stridents sont enregistrés dans le CVR. Ce dernier a son micro dans le poste de pilotage qui est séparé de la cabine par une porte ! Il eut peu de crashs où l’on entendit les cris des passagers dans le CVR.

Les pilotes réduisent les gaz pour la descente d’urgence, mais seul le réacteur droit obéit. Le câble du gauche est rompu et le réacteur devient incontrôlable. Les câbles des commandes sont cassés, fondus ou mélangés aux structures effondrées par le feu. Peu à peu, le DC-9 devient incontrôlable. Il n’est plus qu’un tube en feu lancé dans le vide et dans lequel 110 personnes ont le malheur de se trouver. Le choc avec le sol à plus de 400 nœuds arrivera certainement comme une délivrance.

Pour la première fois dans l’histoire des Etats-Unis, des poursuites criminelles furent engagées contre SabreTech, le directeur de la maintenance, Daniel Gonzalez, et deux employés de cette entreprise Eugene Florence et Mauro Valenzuela. Ils devront répondre de 110 charges de meurtre au troisième degré, de 110 charges d’homicide, de conspiration afin de cacher des problèmes ayant conduit au crash d’un avion civil, d’une charge pour transport illégal de déchets dangereux, de faux témoignage, d’installation d’appareil de destruction à bord d’un avion civil, de faux et usage de faux ainsi que 21 autres crimes fédéraux. Pour la première fois, la justice voulut envoyer un signal fort aux compagnies aériennes. Des personnes qui se croient protégées peuvent avoir à répondre personnellement devant la justice en cas de problèmes. Il n’est plus possible que des responsables fassent des profits ou des économies et que ce soit aux passagers de payer les frais quand vient le jour de la grande facture.

Les parents des victimes ont trouvé la démarche insuffisante puisque qu’aucun responsable de ValuJet ne fut inquiété. Par ailleurs, en septembre 1996, 5 mois après l’accident, ValuJet fut autorisée à voler de nouveau. Ce fut un jour de faste à Wall Street où le titre grimpa de 25% ! Par la suite, la compagnie fusionna avec une autre et les activités continuent sous le nom de cette dernière : AirTran. Dans le site internet de la nouvelle compagnie, jusqu’à aujourd’hui, on peut voir le cours de bourse en direct sur la première page pas loin du formulaire de réservation. Ce qu’on ne voit pas, par contre, c’est les 4 incidents graves qu’ils ont eu entre 1998 et 2003. A chaque fois, l’avion était au bord du crash et à chaque fois ce sont des défaillances ou des erreurs dans la maintenance qui ont été pointées par les enquêteurs.

La FAA a réagit au crash en imposant la présence de détecteurs de fumée et de systèmes d’extinction dans toutes les soutes. Elle donna cependant trois ans aux exploitants pour se mettre aux normes. Dès 2001, aucun avion ne répondant pas aux normes ne sera construit.

Le récit ne serait pas terminé sans que la réponse à deux questions simples ne soit apportée. D’abord, quel est le prix d’un bouchon de générateur d’oxygène ? La réponse est 3 centimes. C’est-à-dire quatre dollars vingt pour protéger les 140 cartouches qui ont causé le crash. Enfin, pourquoi ValuJet décida de transporter des générateurs usagés jusqu’en Géorgie alors qu’elle pouvait les jeter à Miami, en Floride ? En fait, l’Etat de Floride exigeait le payement d’une taxe de recyclage de 6.95 dollars par générateur mis à la poubelle alors qu’en Géorgie on pouvait les jeter gratuitement.

Feu à bord du Saudian Airlines Vol SV163

Le feu à bord est à l’origine des pires accidents d’aviation. Un feu non contrôlé à bord signifie qu’il reste très peu de temps de vol. Ce temps est de quelques minutes tout au plus. Chaque compagnie a ses procédures en cas d’incendie à bord. La meilleure procédure serait probablement d’atterrir n’importe où, n’importe comment et d’évacuer dès que les roues s’arrêtent de tourner.

L’incident du Lockheed L-1011 TriStar 200 de la Saudi Arabian le 19 août 1980 à l’aéroport de Riyadh King Khaled est une triste illustration. C’est l’un des accidents les plus terribles de l’histoire de l’aviation avec un bilan de 301 morts, soit la totalité des occupants de l’appareil.

Les circonstances exacts sont encore controversées, mais l’accident, même arrivé il y a plus de 25 ans, reste riche en enseignements.

Le Lockheed Tristar L-1011 ((dit “ten eleven”) est un long courrier très en vogue dans les années 70 et 80. C’était une alternative intéressante au Boeing 747 et un concurrent du DC10 qui donnera plus tard MD-11.

Le 19 août 1980, en fin d’après midi, l’appareil arrive de Karachi (Pakistan) et atterrit d’abord à Ryad qui n’est qu’une étape dans son plan de vol. A 18:08 locales, il décolle vers sa destination finale, Djeddah, plus au Sud. C’est un vol intérieur par une météo estivale et aucun incident n’est à signaler. Il y a à bord 287 passagers et 14 membres d’équipage. Dans le cockpit, il y a le commandant de bord, le copilote et le mécanicien de bord.

A 18:20, alors qu’il passe le niveau 220, une alarme fumée compartiment cargo C3 (antérieur) se déclanche.

A partir de cet instant, l’équipage a été beaucoup critiqué. Leurs faits et gestes ont certainement du faire la différence. En tout cas, à leur décharge, ils n’ont pas perdu de temps à faire demi-tour. Immédiatement, l’appareil est dirigé vers l’aéroport d’où ils vient de décoller (Riyadh).

A 18:22, de la fumée commence à entrer dans la cabine passagers et un mouvement de panique commence. Le personnel de bord fait son possible pour calmer les esprits.

Cinq minutes après l’alarme, à 18:25, c’est le feu qui arrive en cabine passagers alors que le réacteur numéro 2 n’est plus contrôlable. Ses câbles ont été endommagés par le feu et il sera même arrêté un peu plus tard. Le Tristar a 3 réacteurs et le numéro 2 est celui qui se trouve tout à l’arrière. Sa perte n’est pas très dommageable lors d’une approche, et à tout prendre, est moins grave que la perte d’un moteur situé sous l’aile.

A 18:27, le commandant de bord utilise l’interphone pour demander aux passagers de rester assis. En effet, il y a du mouvement en cabine et la panique est de plus en plus difficile à gérer par le personnel naviguant commercial (PNC).

En approche finale, après avoir arrêté le moteur 2, le commandant de bord va prendre une décision qui va sceller son sort et celui de 300 personnes sous sa responsabilité. Que chaque lecteur donne un nom à cela.

Le commandant demande simplement à l’équipage de ne pas faire évacuer l’appareil. Le Tristar atterrit à 18:36 et au lieu de faire un freinage d’urgence, il continue à rouler tranquillement le long de la piste. Le commande contacte la tour de contrôle et explique qu’il va arrêter l’appareil et faire une évacuation.

Les moteurs sont arrêtés à 18:42, soit 6 minutes après l’atterrissage. Normalement, si tout avait été fait dans les règles, à 18:42 l’avion aurait du être vide déjà.

Il n’y a plus aucune communication depuis l’avion qui est arrêté en bout de piste. Le contrôleur aérien envoit l’équipement d’urgence et les services de secours s’emploient à ouvrir les portes. A 19:05, la porte 2R est enfin ouverte. L’intérieur est totalement enfumé et il n’y a plus le moindre de signe de vie. Trois minutes plus tard, l’incendie envahit la cabine et oblige les secouristes à reculer. Les flammes consomment l’appareil et le toit commence à fondre. Malgré les lances à incendies, toute la cabine de l’appareil est consommée.

Tous les corps sont retrouvés dans la partie avant de l’appareil. Il n’eut aucun survivant. A ce jour, c’est le plus grave accident ayant jamais eu lieu en Arabie Saoudite. C’est, également, l’accident le plus grave causé par du feu à bord.

Autre possibilité
On a souvent évoqué l’absence d’entrainement et de formation de cet équipage. Les trois membres d’équipage de conduite avaient un passé de problèmes cognitifs et le mécanicien de bord confondait souvent sa gauche et sa droite et souffrait de dyslexie. Durant l’approche, il paniqua et ne put jamais sortir les bons documents de ses classeurs.

Quelque soit leur formation et leur niveau d’entrainement, on peut accepter sans démonstration que ces gens ne se seraient jamais laissé tuer par les flammes sans prendre la fuite. Rappellons que l’avion est au sol. Il suffit de deux secondes pour ouvrir un hublot et une autre seconde pour sauter.

Il est clair que le commandant de bord a sous estimé l’ampleur de l’incendie. Ils le sous-estiment toujours les pilotes, plusieurs accidents le démontrent. Néanmoins, même s’il a sous-estimé, ou même très sous-estimé, l’ampleur de l’incendie, le commandant, le copilote… auraient au moins ouvert un hublot. Par ailleurs, même si le commandant ne leur avait pas ordonné d’évacuer, ou leur avait même ordonné le contraire, les PNC aurait certainement tenté d’ouvrir les issues de secours une fois que la situation devenait intenable. Elle était déjà intenable en vol.

Un petit dessin pour comprendre:

L’avion décolle de Ryadh (OERY) qui se trouve à une altitude de 2082 pieds. Il a pour destination Djeddah (OEJN) qui se trouve au niveau de la mer avec une altitude de référence de 48 pieds. En vert (1) ont voit le trajet tel qu’il était planifié et en rouge (2) ce qui a été réellement effectué.

L’avion était au niveau 220 à 18:20 et il avait atterrit 16 minutes plus tard. Le mécanicien de bord s’était occupé durant toute la crise à chercher les check-lists feu à bord et il ne les a jamais trouvées. Il se répétait tout le temps “pas de problèmes, pas de problèmes”. Le copilote n’a pas du tout participé et avait peu d’expérience sur ce type d’avion. Pendant ce temps, l’altitude cabine était programmée pour un atterrissage à Djeddah, soit une altitude de 48 pieds. Si c’est le cas, à l’arrivée à Riyadh, la cabine est à 48 pieds alors que le pression dehors correspond à 2082 pieds. La pression dans la cabine est trop élévée et le différenciel ne permet pas de manoeuvrer les portes ni les hublots mobiles du cockpit.

On peut même aller plus loin: si le mécanicien naviguant ou des pilotes avaient cherché à changer l’altitude cabine pour l’adapter à la réalité, rien ne dit que le système était en état de répondre et de tenir effectivement compte de l’ordre.

La cause du feu n’a elle-même jamais été établie.

Un cockpit mal géré : Le crash de l’A320 de Gulf Air Vol 072

En été 2000, au mois d’août, la presse nous montra les images affligeantes d’une mer merveilleusement turquoise au fond de laquelle reposaient les restes d’un avion de ligne et ses 143 occupants. L’approche s’était faite de nuit et l’avion percuta la surface de l’eau. Souvent, quand ce genre de tableau se présente, les enquêteurs pensent à une illusion d’optique bien connue. De nuit, les pilotes ont toujours tendance à se croire plus haut qu’ils ne le sont réellement. Seule une confiance absolue aux instruments permet de rester sur la bonne trajectoire. Et en matière d’instruments, l’Airbus A320 est très bien équipé.

Les pilotes ont-ils été victimes de ce phénomène ? L’enquête va démontrer qu’il n’en est rien. Certains avions n’ont pas besoin de panne moteur, de feu à bord ou de terroristes pour s’écraser. Les pilotes eux-mêmes, par leur attitude, sont parfois de véritables bombes à retardement.

Le vol Gulf Air 072 décolle en début de soirée de ce 23 août à partir de l’aéroport du Caire. En plus des huit membres d’équipage, l’avion transporte 135 passagers pour l’aéroport de Bahreïn International (BAH) dans le golfe persique. L’arrivée est prévue au début de la nuit, mais la météo est bonne et présente rarement de phénomènes dangereux dans cette partie du globe.

Le voyage se déroule confortablement. C’est au moment de l’approche que les choses divergent dangereusement. Pour rassurer les futurs passagers, disons que les pilotes du type impliqué dans cette catastrophe ont été totalement éradiqués des compagnies occidentales. Il existe plusieurs barrages et garde fous pour que des personnes pareilles n’arrivent jamais dans un cockpit. Néanmoins, ce type de pilotes sont très fréquents dans les pays du sud où les distances hiérarchiques sont très fortes et dominent le fonctionnement des compagnies.

Rappelons tout d’abord le rôle des pilotes. Dans chaque avion de transport civil, il y a au moins deux pilotes. Ils n’ont pas toujours la même expérience, mais ont la même formation et la même compétence. S’il le faut, chacun d’eux serait capable de piloter l’avion tout seul et ce, même en cas de problèmes. Le fait d’avoir deux pilotes se situe dans la même logique que d’avoir deux réacteurs ou plusieurs réservoirs ou générateurs électriques. C’est le principe de la redondance. Par ailleurs, l’un des pilotes est nommé commandant de bord. L’autre, copilote ou premier officier pilote. Le commandant de bord est, normalement, plus expérimenté que le copilote. Mais ce n’est pas toujours le cas. Normalement aussi, tous les pilotes commencent sur un avion en tant que copilotes puis évoluent avec le temps et leurs états de services au grade de commandant de bord. Mais ce principe n’est pas toujours vérifié.

Les pilotes se répartissent les tâches par étapes. Par exemple, le copilote réalise le décollage et l’atterrissage lors de l’aller. Au retour, c’est le commandant de bord qui sera aux commandes et ainsi de suite. Le pilote qui n’est pas en fonction, dit PNF, qu’il soit copilote ou commandant de bord, supervise et aide le pilote en fonction. Ainsi, si l’un des pilotes tient le manche, l’autre affichera les fréquences de navigation, sortira les cartes et s’occupera des communications radios.

L’harmonie entre les personnes aux commandes de la destinée de l’avion est vitale. Leur travail et la répartition de leurs taches sont très codifiés et font l’objet d’entraînements et de formations spécifiques. En vol normal, comme en urgence, chaque pilote doit connaître la tâche qui est la sienne. Ceci évite que deux personnes fassent la même chose alors que des tâches vitales restent inaccomplies.

Hélas, sur certains appareils, et en fonction de leur culture personnelle, les commandants de bord se prennent pour ce qu’ils ne sont pas et abusent du pouvoir qui leur est confié tout en sacrifiant la sécurité. Ainsi, on voit des commandants de bord parler et se comporter avec vulgarité et devenir, l’espace d’un vol, ou plus, de véritables voyous du ciel. Sacrifier son copilote, c’est comme se débarrasser d’un réacteur, parfois pire.

Le CVR enregistre les dernières trente minutes de conversations d’un vol. Parfois, il en garde une minute ou deux de plus. C’est ce boîtier orange, à la résistance inouïe, qui relate les évènements qui ont conduit à la tragique issue de cette soirée.

L’enregistrement commence lors de l’approche par un échange qui donne une juste idée sur le déroulement du vol :

– Appelles Bahreïn et dis leur qu’on veut la piste 12

Le copilote s’exécute sans répondre et la tour de contrôle l’autorise à descendre à 3’500 pieds pour l’approche sur la piste 12. Le commandant de bord continue sur un ton qui n’est pas sans rappeler les films western mal doublés :

– Bon on va faire une approche VOR/DME. Tu devras lire les distances et me les donner. Tu dois faire attention. Tu dois dire si tu es capable ou pas de faire ça, ok ?
Le DME est un instrument qui affiche en texte clair la distance qui reste par rapport à un point de navigation donné. Demander à une personne si elle est capable ou pas de lire ce chiffre et de le répéter, c’est la traiter comme un débile mental. Mais les choses continuent :

– Tu vois, j’ai changé le plan de vol et tous les points de route avant même que tu ais le temps de cligner des yeux ! Tu vois ?
– Ok, tu as vu, hein ? continue le commandant
– Oui, j’ai vu, répond enfin le copilote
– Je suis un seigneur ! lance perfidement le commandant de bord.

Alors que l’ordinateur de bord doit être programmé conjointement par le copilote et le commandant, chacun vérifiant le travail de l’autre, chez Gulf Air, les choses se passent, à l’évidence, autrement. Le commandant fait tout le travail tout seul et admire ses propres performances en prenant le copilote à témoin.

Pendant qu’il parade sous les yeux de son unique spectateur, le commandant de bord en oublie son avion. Alors que l’appareil est à moins de 2’000 pieds d’altitude, sa vitesse est de 313 nœuds ! Soit à peu près deux fois la vitesse qu’il doit avoir à ce niveau là. Autant dire que l’Airbus A320 arrive comme un missile sur l’aéroport.

Le pilote s’active et la vitesse de l’avion est diminuée mais pas suffisamment. A 1’670 pieds, alors que l’appareil est à vue de la piste, sa vitesse est de 224 nœuds. De plus, comme il est en descente, il n’a pas tendance à perdre rapidement l’excès de vitesse. A moins de 1’000 pieds, l’avion est à 207 nœuds et le commandant de bord coupe le pilote automatique et décide de régler les choses en manuel et à sa façon. Après quelques corrections, ce dernier se rend compte qu’il n’y aucun moyen de rattraper la chose. L’avion est trop haut et va bien trop vite pour pouvoir se poser en toute sécurité. Ces situations sont prévues dans les procédures aériennes. Si l’avion n’est pas stabilisé sur son approche, l’équipage doit abandonner celle-ci et faire une remise des gaz. Ceci s’effectue en survolant la piste en remontant dans l’axe de celle-ci. Une fois arrivé à une altitude de sécurité, l’équipage fait demi-tour et revient reprendre dès le début l’approche qu’il a ratée.

Une remise des gaz s’accompagne toujours d’une perte de temps et d’une frustration des pilotes. Ces derniers ne se sentent jamais bien de rater une approche faite par une météo facile. Le commandant de bord du Gulf Air décide de commettre une « transgression d’optimisation » comme disent les spécialistes. En dépit de toutes les règles et du bon sens commun, il décide de rattraper l’approche par une technique très personnelle.

Après un rapide message à la tour de contrôle, le pilote aux commandes entame un virage de 360°, soit un tour complet. Son but et de faire un cercle complet et de ressortir à la bonne altitude et à la bonne vitesse. Cette technique qui est parfois pratiquée à haute altitude est très dangereuse à réaliser de nuit aux ras de l’eau.

L’appareil commence à tourner à gauche sous les ordres du commandant de bord. Les volets et le train d’atterrissage sont sortis. La vitesse diminue et l’altitude aussi. L’avion n’est plus qu’à 330 pieds de l’eau quant le commandant de bord lance : « on l’a ratée ! ». En effet, il vient de revoir la piste mais au lieu qu’elle soit en face, elle est visible sur le hublot gauche. En effet, le virage n’a pas été correctement réalisé. Quand l’avion recroise l’axe de piste, il n’a pas fait un tour complet, mais trois quarts de tour. Résultat, l’appareil se retrouve à un cap perpendiculaire à la piste.

Il ne reste qu’une seule chose à faire cette fois : remettre les gaz. Les manettes des gaz sont poussées à fond l’avion commence à accélérer en montant. Il accélère tellement qu’au bout de quelques secondes l’alarme de survitesse retentit. Quand les avions sont dans une configuration d’atterrissage, avec, notamment, les volets sortis, la vitesse maximale est très limitée. Quand cette vitesse est atteinte, une alarme caractéristique retentit dans le cockpit pour avertir l’équipage qui doit réduire les gaz ou mettre l’avion en montée. Cependant, dans le cockpit de l’Airbus la panique est totale. Le commandant a raté son approche, il a raté sa correction improvisée et il a l’impression de rater sa remise des gaz puisque l’alarme s’est déclanchée.

Le commandant est mort lors de l’accident qu’il a provoqué, de sorte que jamais on ne saura pourquoi il a poussé sur le manche. Effectivement, dès que l’alarme retentit, le commandant pousse le manche et le maintient poussé pendant plus de 11 secondes. Alors qu’il s’acharne en piquée, l’avion gagne encore plus de vitesse tout en perdant de l’altitude. L’appareil s’approche de plus en plus de l’eau et le GPWS se met tout à coup à crier : « Whoop ! Whoop ! Pull up ! Pull up ! ».

Cette alarme, avec celle de l’incendie, est sans aucun doute la plus effrayante à entendre dans un cockpit. Normalement, de toute sa vie, un pilote ne l’entend pas. Quand elle retentit, il n’y a qu’une chose à faire : tirer agressivement sur la manche et pousser les gaz à fond. Néanmoins, beaucoup de pilotes ont préféré se crasher que de réagir correctement.

Quand le commandant entend cette alarme puissante, il lui reste huit secondes à vivre. Pendant ces longues secondes, il aurait pu tirer sur le manche, mais il n’en fera rien. Le copilote, lui, est terrifié. Il voit le drame se passer, mais, il n’ose pas réagir. Jamais il ne touchera à son manche pour récupérer l’avion.

A moins de deux secondes avant l’impact, le commandant de bord commence mollement à réagir. Il tire sur le manche, mais à aucun moment il n’ira jusqu’en butée. Le résultat ne se fait pas attendre. L’avion s’écrase contre l’eau à une vitesse de plus de 280 nœuds. La profondeur n’est que de trois mètres mais à forte vitesse, l’eau semble aussi dure que du béton. Les débris s’étalent sur plus de 700 mètres. Les 143 occupants de l’avion trouvent tous la mort. L’eau était à 33° et aurait permi la survie de personnes qui n’auraient pas trouvé la mort immédiatement. Hélas, personne n’aura cette chance.

L’enquête fut facilitée par l’accessibilité des lieux et la proportion des pièces retrouvées. L’avion était en bon état et tous les systèmes étaient fonctionnels jusqu’au crash. Des reconstitutions ont été réalisées en simulateur de vol avec divers scenarii. Selon la compagnie, ses procédures imposent aux pilotes de tirer sur le manche jusqu’en butée lorsque l’alarme de proximité du sol retentit. Il fut également déterminé que si le copilote avait pris les commandes et réagi à l’alarme, il aurait facilement pu sauver l’avion. Plus grave encore, il fut demandé aux pilotes réalisant la simulation de lâcher les commandes au moment où l’alarme se déclanche. Dans ce cas, l’avion se remet à plat et commence à monter lentement, mais sûrement. Ceci montra deux choses. D’abord, que c’est le commandant de bord qui a écrasé l’avion contre l’eau en poussant sur le manche comme un malade et ne réagissant pas à l’alarme GPWS qui annonçait le crash. Puis, insulte suprême, que parfois il vaut mieux avoir un avion laissé à lui-même qu’entre les mains de certains pilotes.

Le commandant de bord, qui se prenait pour le seigneur des pilotes, avait été promu à son poste le 17 juin 2000. Il parti en vacances puis rentra juste à temps pour écraser l’avion qui lui était confié.

Afin de défendre son appareil, Airbus réalisa la même approche sur l’aéroport de Bahreïn avec un vrai A320 cette fois. A bord, avaient pris place divers enquêteurs locaux auxquels s’étaient joints des membres du NTSB et du BEA français. La démonstration se faisant de jour, on demanda plusieurs fois aux passagers de fermer les yeux pour ne se fier qu’à leurs sensations. Diverses expériences furent réalisées et toutes montrèrent que pour s’écraser, il fallait pousser sur le manche afin que l’avion aille en direction de l’eau.

Après ce drame, Gulf Air promis de changer toutes ces procédures afin que ce genre de choses n’arrive plus jamais. Chez Gulf Air tout du moins.

La longue Chute du Vol Alaska Airlines 261

Les crashs dont la séquence dure longtemps sont particulièrement effrayants et nourrissent, à juste titre, l’imagination du public. L’histoire du vol d’Alaska Airlines 261 est celle d’une vraie bataille aérienne contre le destin. Plus de deux heures durant, les pilotes livrèrent une bataille désespérée.

Le vol 261 était réalisé par un MD-81. Ce biréacteur très fiable est largement utilisé aux Etats-Unis et en Europe où Alitalia est la compagnie qui en exploite le plus grand nombre. Durant cette journée du 31 janvier 2000, le vol 261 décolle de l’aéroport de Puerto Vallarta dans le Mexique à destination de Seattle au nord Ouest des Etats-Unis. Une escale commerciale est prévue à San Francisco dans l’état côtier de Californie.

Les premières minutes du vol se passent sans histoire. L’avion est passé d’un contrôleur à un autre et finit par être autorisé à rejoindre son altitude de croisière qui est de 31’000 pieds ce jour là. La météo est très correcte et rien ne laisse présage le pire.

Soudain, l’avion subit une secousse brutale et se met à plonger. Aucun signe annonciateur n’est venu prévenir. Dans la cabine, les passagers s’accrochent à ce qu’ils peuvent alors que les pilotes, de toutes leurs forces, tirent sur le manche.

Le taux de descente atteint rapidement 7’000 pieds par minute. L’un des pilotes appelle le contrôleur pour avertir de la situation.

– Nous plongeons ! lance-t-il à la radio

Malgré son radar, le contrôleur est choqué pendant un instant. Il croit avoir mal entendu et demande au pilote de répéter son message. Pourtant, il n’y a pas de doute à avoir, l’avion passe déjà les 26’000 pieds en descente.

A eux deux, les pilotes arrivent à stopper la chute et à plus ou moins maintenir l’avion. A ce moment là, ils vont prendre une décision très grave que beaucoup de familles leurs reprocheront toujours. Alors qu’ils ont 9 aéroports civils et militaires dans le voisinage, les pilotes ne choisissent pas de se poser. Au lieu de cela, ils décident de continuer sur San Francisco, leur prochaine escale d’après le programme. Quant au problème de l’avion, ils vont chercher à le résoudre en plein vol, en tentant plein de choses en fonction de l’inspiration du moment.

Tout à l’arrière, l’empennage de l’avion est constitué d’une aile horizontale appelée stabilisateur de profondeur. Cette aile, porte les gouvernes de profondeur qui sont actionnées par le pilote et lui permettent de faire piquer ou cabrer l’avion. Elle-même, l’aile peut être manœuvrée. Afin de réduire les efforts sur le manche, le pilote actionne un petit bouton qui permet de faire bouger l’aile et de la fixer à une position différente. Ce mouvement, très lent, s’effectue grâce à des moteurs électriques qui actionnent une vis sans fin. Ce dispositif est connu depuis l’époque d’Alexandre le Grand et Archimède. La vis, longue d’environ 55 cm, tourne sans bouger. Fixé dessus, il y a un écrou gros un poing fermé. Lorsque la vis tourne dans un sens ou dans l’autre, l’écrou se déplace dessus vers le bas ou vers le haut. Ce mouvement est communiqué au stabilisateur de profondeur. Malgré une certaine lenteur, l’avantage de ce système est qu’il permet d’obtenir une grande force au niveau de l’écrou. De plus, le système reste dans n’importe quelle position que les pilotes lui donnent. Si personne ne vient le bouger, il ne bouge pas tout seul.


Rachel Pearson, victime du vol 261. Elle porte un plâtre sur le bras
gauche suite à une chute de vélo. (Crédit Photo Famille Pearson).
Afin de reprendre le contrôle de l’avion, les pilotes décident de changer le calage du stabilisateur. Malheureusement, le stabilisateur en question réagit peu ou pas à leurs ordres. A ce niveau là, presque tous les pilotes du monde auraient choisi de faire diversion sur le premier aéroport capable de les accueillir. Mais l’équipage de conduite du vol 261 s’acharne. Alors qu’ils ont l’avion en main, ils décident de tenter encore de régler le stabilisateur. Ils activent les deux moteurs en même temps et les laissent tourner pendant un bon moment. Dans leur cockpit, ils ne peuvent pas savoir si effectivement la vis sans fin se trouvant 45 mètres derrière tourne ou ne tourne pas. Du moment qu’ils ne sentent pas l’avion réagir, ils s’acharnent, c’est le mot, sur les boutons du trim en espérant obtenir quelque chose à la longue.

La situation s’aggrave et les pilotes ne peuvent plus empêcher l’avion de plonger. Ils arrivent néanmoins à me diriger au large, sur la baie de San Francisco. Ils décident de faire quelques tests pour reprendre le contrôle de l’appareil et atterrir par la suite sur l’aéroport de San Francisco. Le commandant de bord a une idée : pousser sur le manche et profiter la tendant naturelle de l’avion à piquer pour créer des G négatifs. Cette accélération qui crée un état d’apesanteur en cabine, pourrait permettre de débloquer, à ses yeux, le stabilisateur récalcitrant. Les passagers sont prévenus et trois plongées très brutales sont réalisées. Lors de l’une d’elles, -3 G seront mesurés.

Un mécanicien de vol de la compagnie entre en communication radio avec les pilotes. Ces derniers lui expliquent les problèmes. Ils avaient déjà rencontré des difficultés avec le stabilisateur horizontal dès le début du vol, mais ils avaient préféré continuer. Deux heures et demi de vol ont été réalisées avant que la situation ne commence sérieusement à échapper aux pilotes.

Alaska-Airlines-261-avion

Pendant qu’ils parlent au technicien, l’avion part brutalement vers le bas. Il perd 10’000 pieds et se stabilise quelques instants à 7’000 puis reprend une plongée plus brutale que les autres. Il pique du nez puis se retourne sur le dos. Sentant la fin proche, l’un des pilotes adresse « un merci » au contrôleur aérien qui a tout fait pour les sortir de la situation désespérée qui était la leur.

Il fait jour, beaucoup d’avions survolent la baie et voient en direct la chute du MD-80 aux couleurs d’Alaska Airlines. Le contrôleur aérien ainsi que beaucoup de radio amateurs de la côte Ouest entendent les commentaires en direct sur la fréquence :

– Il plonge, annonce un témoin
– Il passe sur le dos, déclare un autre
– Il vient de toucher l’eau, c’est fini monsieur

Un hélicoptère orange des gardes cotes est rapidement sur les lieux. L’eau est à 15 degrés et on espère trouver des survivants. Mais sur les lieux, ne sont visibles que des débris flottants qui dansent au gré de la houle. Les 88 occupants de l’appareil sont tous morts sur le coup.

Les secours arrivent et des filets de pêche sont déployés pour tout ramasser. La profondeur de l’eau, 120 mètres, permet une recherche sans difficultés et des restes de l’appareil.

Dès le lendemain, la polémique enfle :

– Pourquoi, bon Dieu, ont-ils choisi de poursuivre leur vol au lieu de poser au plus vite ? interpelle un avocat

Le NTSB se pose la même question. Les enquêteurs surgissent dans les ateliers de la compagnie et saisissent tous les documents de maintenance. Treize avions d’Alaska Airlines sont cloués au sol jusqu’à nouvel ordre. Afin d’éviter de se retrouver dépassées par le scandale, les autorités décident de jour la transparence. Les journalistes sont invités à écouter le CVR. Quant aux parents des victimes, ils reçoivent tous un courrier avec la transcription détaillée du contenu de ce CVR.

L’écoute de l’enregistrement est particulièrement pénible. Durant les dernières minutes, le commandant de bord parle de façon claire et intelligible. Par contre, sa voix est celle d’un homme brisé. Il sait que l’avion descend trop vite et que la piste est trop loin.

Deux moi après l’accident, le FBI s’intéresse à l’affaire d’un point de vue criminel. D’après des révélations de journaux, des responsables techniques auraient été mis sous pression et même « intimidés » pour qu’ils expédient au plus vite les opérations de maintenance. Se sentant visée, la Alaska Airlines lance un audit externe et crée une hotline indépendante pour tous les pilotes et techniciens qui ont des plaintes à formuler au sujet de la sécurité des opérations.

Pendant ce temps, le fond de l’océan est passé au peigne fin et la majorité des débris de l’appareil sont remontés. La vis sans fin est retrouvée dans un état d’usure avancé et cohérent avec son comportement en vol. Le filetage est arrachée et s’enroule comme un fil de fer à distance de la tige qui est presque lisse.

Le 13 juin 2000, une nouvelle arrive comme une bombe : en septembre 1997, un mécanicien avait remarqué que la vis sans fin présentait des signes importants d’usure. Il la déposa et la remplaça par une neuve. La dépense occasionnée ne fut pas du goût des responsables de la compagnie. La pièce fut récupérée de la poubelle, contrôlée par leurs soins puis déclarée apte au service et remise sur l’appareil. On découvre par ailleurs, que la compagnie avait fabriqué elle-même un outil non agrée et peu fiable pour contrôler les vis sans fin des stabilisateurs horizontaux. C’est est trop ! On fait inspecter 18 des MD-83 de la compagnie. Le résultat est effrayant : 17 avions ont une vis sans fin usée et sur le point de déclancher un crash.

Le NTSB qui poursuit patiemment son enquête. Traditionnellement, un technicien ou un pilote de la compagnie concernée par un crash se joint aux enquêteurs. Mais exceptionnellement, le NTSB déclare qu’il écarte le membre d’Alaska Airlines qui avaient été admis dès le début. On apprend que ce dernier n’a cessé de tout faire pour perturber et retarder l’avancée des choses. Le public est édifié. Pour la première fois, les gens semblent découvrir qu’aux yeux de certaines compagnies aériennes, leur vie et celle de leurs proches ont un prix.

L’enquête qui avance va éclabousser la FAA également. Cette autorité gouvernementale certifie les avions ainsi que toutes leurs procédures de maintenance et d’exploitation. Les décisions de la FAA font école dans le monde entier. Le fabriquant de la vis sans fin, spécifiait clairement qu’il fallait y accéder pour la contrôler et surtout la graisser toutes les 500 heures de vol. Ce chiffre n’est pas avancé au hasard, mais résulte de tests sévères lors de la conception et la certification de cette pièce vitale de l’avion. Mais chez Alaska Airlines, certains responsables ne le trouvent pas à leur goût. Ils contactent la FAA et argumentent : les visites coûtent cher et sont difficiles à réaliser dans la mesure où l’empennage se trouve à 9 mètres du sol.

Comme trop souvent, la FAA est sensible à la requête et autorise la compagnie à ne réaliser ces contrôles que tous les 8 mois sans aucune limitation de temps de vol. En 8 mois, l’avion qui s’est écrasé avait accumulé 2’550 heures de vol.

Quand la vis sans fin est sortie de l’eau, il devient clair qu’elle ne portait aucune trace de grâce bien longtemps avant le crash. Le métal glissait contre le métal et le filetage subissait une abrasion à chaque fois que le stabilisateur était déplacé. A un moment donné, la question n’était plus si un crash allait se passer, mais plutôt quand allait-il se passer.

Ainsi, monter à bord de ce MD-83 immatriculé N963AS était-il devenu une sorte de roulette russe. La physique avait décidé du crash et le hasard devait choisir le moment.

Au décollage, ce 31 janvier, l’usure avait atteint un point extrême. Juste quelques aspérités sur la vis retenaient encore l’ensemble. Durant le vol précédent, les pilotes avaient déjà expérimenté quelques ratés avec le trim. Le comportement était voisin de ce que vous constatez lorsque vous cherchez à visser un boulon qui est foiré. Parfois il s’accroche et parfois il tourne dans le vide. Quand le phénomène est poussé à son comble, on peut même retirer l’écrou sans avoir besoin de le tourner. L’équipage en parle pendant près de vingt minutes avec les techniciens au sol. Avec un léger doute, les pilotes décollent. Immédiatement, le problème se manifeste de nouveau. En effet, le gros boulon auquel est attaché le plan horizontal avait glissé sur quelques sillons donnant une tendance à piquer de l’avion. Cette tendance est nette mais pas dramatique. Les pilotes insistent un peu sur le trim et finissent par rétablir la situation et le vol continue.

Au bout de 2 heures et demi, alors que l’appareil est à la frontière entre la Californie et le Mexique, les forces aérodynamiques finissent par faire céder le bout du filetage qui tenait encore. Le boulon glisse de plusieurs centimètres et finit par s’arrêter sur une zone plus ou moins potable de la vis sans fin. A ce moment, l’avion vole à 31’000 pieds et se met brutalement en plongée. Le contrôleur aérien est averti à 26’000 pieds et l’avion récupérer à la force des bras vers 23’000 pieds. Jusqu’à cet instant, l’issue du vol n’était pas encore donnée. Si les pilotes avaient décidés de ne « toucher à rien » et de se poser sur le premier aéroport venu, ils seraient probablement en vie de nos jours.

Mais une chute de 8’000 pieds ne semble pas impressionner nos pilotes. Avec le peu de moyens qu’ils ont, ils décident de « régler le problème » tout en continuant sur leur destination. Cette obstination brutale va signer leur arrêt de mort.

Ils commencent par activer le premier moteur de la vis sans fin. Celle-ci tourne et les dernières aspérités commencent à partir en poussière. Quand des pièces métalliques qui subissent des forces élevées sont frottées les unes contre les autres, elles chauffent rapidement et l’usure est très rapide. Comme l’avion ne réagit pas favorablement, les pilotes actionnent les deux moteurs en même temps et à toute vitesse. Pendant plusieurs minutes ils on les doigts dessus. Parfois, ils sentent que le plan horizontal a bougé et cet espoir les incite à persister. Le système est tellement endommagé, que le boulon glisse encore plus loin et l’avion plonge à partir des 17’000 pieds. Au passage des 7’000 pieds, le boulon bute sur une dernière aspérité qui le retiendra pendant quelques secondes. Enfin, il glisse encore, mais cette fois la tige de 55 centimètres est terminée. Le système se disloque totalement et le plan horizontal se braque complètement vers le haut. Il est même probablement arraché par le vent. L’avion plonge vers la mer et la suite nous la connaissons.

Parmi les nombreuses leçons de ce drame, le NTSB recommande aux pilotes de ne plus jamais s’acharner sur les systèmes. Si quelque chose ne fonctionne pas après un nombre raisonnable d’essais, il faut savoir s’arrêter et se poser pour laisser les techniciens intervenir.

Une histoire controversée : Le crash du TWA 800

Rarement un accident d’avion aura autant défrayé la chronique et divisé la société autant que celui du TWA 800. Malgré la publication d’un rapport final d’enquête, certes aux termes prudents, ce drame n’a pas encore cessé de faire parler de lui…

C’est le 17 juillet 1996, la météo est assurément estivale sur l’aéroport John Kennedy International dans l’Etat de New York. Parmi les vols de ce début de soirée, figure le TWA 800 à destination de Paris Charles de Gaule. Très apprécié des touristes, ce vol part vers 19 heures locales et arrive lendemain, très tôt, à Paris laissant toute la journée pour trouver un hôtel ou découvrir la ville. Grâce à ce choix judicieux des heures de départ et d’arrivée, l’effet du décalage horaire est limité.

C’est un 747-100 qui est programmé ce mercredi soir. L’avion est très bien entretenu et l’équipage à la hauteur de la réputation de la compagnie. L’appareil était rentré d’Athènes dans l’après midi et l’équipage qui avait réalisé ce vol n’avait rien constaté d’anormal dans le fonctionnement des divers systèmes. Le 747-100 est la première version de ce quadriréacteur à deux ponts. Peu de compagnies occidentales l’utilisent encore pour le transport des passagers, lui préférant la version 400 bien plus moderne et économique. Le 747-100 reste un avion sûr, mais assurément passé de mode.

Deux heures et demie suffisent aux équipes de sol de préparer l’avion, remettre du carburant, changer d’équipage et enfin embarquer les passagers à destination de Paris. Il y en a 212 ce jour là. Certains sont originaires de Caroline du Sud, d’autres de Californie, d’autres de Garancières dans le soixante dix huit … ils ont tout en commun d’avoir embarqué sur cet oiseau de malheur qui n’arrivera jamais à Paris.

Dans le cockpit, prennent place le commandant de bord, le copilote, le mécanicien de bord ainsi qu’un mécanicien examinateur. En effet, le mécanicien navigant était à sa première sortie sur 747-100 et devait subir un test de qualification en vol. Au moment du départ, un premier problème survient. Un véhicule de piste tombe en panne juste derrière l’avion. Il faudra près d’une heure pour qu’on trouve le moyen de le dégager. En suite, les responsables de sécurité constatent qu’un passager n’a pas embarqué alors qu’il a enregistré des bagages en soute. Il faut les retrouver et les décharger, c’est la règle. Finalement, l’appareil ne commence à rouler qu’à 20 heures passées.

Le décollage se fait à 20 heures 19 de la piste 22R d’après le rapport d’accident. Quelques instants plus tard, l’avion met le cap vers l’Europe et commence à survoler l’Atlantique en montant vers son altitude de croisière.

A 20 heures 30, l’ARTCC de Boston autorise l’équipage à poursuivre la montée vers 15’000 pieds. Au même moment, le commandant de bord demande au nouveau mécanicien d’afficher la poussée correspondante à la phase de montée. Cette phrase routinière fut la dernière à être enregistrée par le CVR.

A 20 heures 31 minutes, pour une raison donnée, l’avion se brise en deux parties. D’une part, l’avant qui comporte le cockpit, le pont supérieur et le pont inférieur jusqu’au niveau de l’emplanture des ailes. Le second morceau comprend les ailes avec les réacteurs ainsi que tout l’arrière de l’avion.

L’avant du 747 tombe vers l’océan en tournoyant alors que le reste de l’avion continue à voler pendant 40 secondes et même à monter grâce à la poussée continue des quatre réacteurs. Cette étrange scène dure plusieurs minutes qui s’achèvent de plein fouet contre la surface de l’océan. L’accident est classé comme non survivable et effectivement, personne n’y survécut.

Le ciel au large de New York est l’un des plus chargés au monde. Des dizaines de pilotes voient une forte explosion dans la nuit tombante et reportent la chose aux contrôleurs aériens dont ils dépendent. Les promeneurs le long des plages assistent au même spectacle et voient des pièces d’avion, dont certaines en feu, pleuvoir du ciel.

Tout ce que compte New York comme bateaux est mis à l’eau. Les gardes cotes se joignent aux recherches avec navires et hélicoptères puis des barrages flottants sont dressés; on craint pour la vie de 230 personnes. A la surface de l’eau, de larges nappes de kérosène continuent de brûler tenant en respect les secouristes.

Les recherches se poursuivent durant toute la nuit et pendant plusieurs mois afin de remontrer le maximum de débris et permettre d’élucider les causes du drame. Néanmoins, le mot d’ordre était clair : tous les efforts devaient s’appliquer à retrouver les corps des victimes, les restes de l’épave passeront au second plan.

Le lendemain du crash, dès le matin, une équipe complète du NTSB est sur les lieux. Dans les jours suivants, les autorités américaines vont convier le Bureau Enquête accidents, le BEA, Français à participer à l’enquête.

Après le premier vent de panique et le rush des volontaires et curieux de tous bords, le secteur est interdit à la navigation et seuls des navires spécialisés participant aux investigations y ont accès. L’un de ces navires est mis à disposition par l’U.S. Navy, il s’agit de l’U.S.S. Rude. Ce bateau océanographique peut envoyer des plongeurs professionnels et est équipé de l’un des plus puissants sonars au monde. Une sorte de poisson métallique est plongé dans l’eau et tracté dernière le bateau. Il émet des ondes sonores de l’ordre 100 à 500 KHz. Plus la fréquence est élevée, meilleur est le détail. Par contre, les fréquences élevées traversent très mal l’eau et se perdent rapidement. Le Side Scan Sonar transmet ses données à un ordinateur qui réalise des images en trois dimensions du fond marin. Quand les conditions sont bonnes, les images ont la presque même qualité que si elles avaient été réalisées avec un appareil photo. Ne leur manquent que les couleurs. Dans les jours suivants, la marine américaine va renforcer ses moyens sur la zone en envoyant plus de 5 navires supplémentaires. Les uns servent à la recherche, les autres à la logistique des équipes qui restent jour et nuit sur place. Un nouveau type de scanner est mis en place : le LLS qui travaille au laser. Ce scanner est capable de lire, même de nuit, une plaque d’immatriculation de voiture posée sur un fond marin !

Aucune marine au monde n’est aussi bien expérimentée que l’U.S. Navy quand il s’agit de chercher des avions au fond de l’eau. Ses équipes sont intervenues sur les plus grands chantiers depuis de longues années. On leur doit la récupération de l’épave du vol United Airlines 811, celle de l’Air India piégé au large de l’Irlande par des terroristes, celle du 757 de Birgenair et jusqu’aux restes de la navette Challenger qui a explosé en 1986. Quelques soient les difficultés, la Navy, en moyenne, repêche un avion civil ou militaire toutes les trois semaines.

Les plongeurs se relayent et leurs témoignages sont poignants. L’un d’eux, le Lieutenant Robert Devine, trouve une bouteille de parfum encore fermée avec son contenu intact. Il trouve également une image. Sur le dos, il lit « Justin, 4 mois » quand il la retourne, il ne voit qu’un rectangle blanc. L’eau avait effacée l’image. Certains débris qu’il trouve, ne sont pas plus gros qu’un dé à coudre. Lui-même, il a du mal à imaginer que les débris qu’ils remonte dans son panier avaient un jour constitué un 747 qui volait dans tous les aéroports du monde.

Par contre, certaines pièces sont si grandes qu’il faut les découper sur place pour les emporter. Le tout est stocké dans un hangar ayant appartenu à Grumman Aviation et loué pour l’occasion par le NTSB.

Les recherches vont durer pratiquement un an. Elles se termineront par une longue phase de balayage du fond marin. Cinq navires de pêche sont engagés pour tirer à faible vitesse des filets lestés qui raclent le fond marin. Ces derniers sont régulièrement remontés et tout objet de fabrication humaine est récupéré puis inspecté soigneusement afin de déterminer son origine. Certaines parties du fond marin voient passer les filets plus de dix fois de suite. Les recherches ne s’achèvent que lorsqu’il n’y a plus rien à remonter.

Dans l’ancien local de Grumman, le 747 immatriculé N93119 resurgit du néant. L’avion est reconstruit à 95% afin de retrouver son état un instant après le début de l’explosion qui l’a subitement ouvert en deux.

Les boîtes noires sont retrouvées, mais elles ne disent rien qu’on ne sache déjà. Elles indiquent que le vol s’est déroulé le plus normalement du monde puis, soudain, les enregistreurs s’arrêtent parce qu’ils ne sont plus alimentés. Durant toute la chute, ni CVR, ni FDR ne fonctionnent. A la rigueur, le CVR laisse-t-il entendre un bruit, mais la bande s’arrête moins d’une seconde après la rupture de l’avion. Des études spectrographiques approfondies sont réalisées sur les derniers 70 centièmes de secondes de la bande du CVR. On compare les données à celles obtenues lors de crashs précédents. A ne pas en douter, le bruit, aussi court soit-il, porte la signature du début d’une violente explosion.

L’enquête commence dans un contexte émotionnel très difficile et dès le début deux explications sont possibles. Soit le réservoir central a explosé, soit l’avion a été atteint par un missile tiré par l’extérieur. Chaque thèse est défendable et chaque thèse a ses partisans. Jusqu’à nos jours, le débat, parfois houleux, n’est pas terminé.

Tout d’abord, l’explosion d’un réservoir vide reste théoriquement possible et a été déjà constatée sur de rares accidents par le passé. Sous le plancher de la cabine passagers du 747, à peu près au niveau de la rencontre entre les ailes et le fuselage, il y a un réservoir a essence. Il faudrait plutôt parler de bâche tant la contenance est grande. Dans sa partie la plus épaisse, ce réservoir fait près de 1.5 mètres d’épaisseur. Son volume total est de l’ordre du 50 m3, soit celui d’une piscine privée. Ce réservoir n’est rempli totalement que lorsque l’avion part pour un vol qui l’amène aux confins de son rayon d’action. New York – Paris, ce n’est pas un vol bien long au regard du 747 qui peut pratiquement faire l’aller – retour sans ravitaillement. Les avions civils transportent le carburant pour leur vol ainsi que des réserves de sécurité et de déroutement imposées par la loi et la météo, mais rien de plus. En effet, tout carburant supplémentaire se trouvant dans l’avion au moment de l’atterrissage est du carburant transporté. Son poids augmente la consommation de l’avion et diminue la quantité de fret qu’il peut emporter. Selon les procédures habituelles, les 747 qui traversent l’Atlantique vers l’Europe de l’Ouest ont, le plus souvent, le réservoir central vide. En vérité, il faudrait dire « aussi vide que possible ». Il reste toujours un bon millier de litres kérosène au fond du réservoir même quand l’aiguille dans le cockpit indique pratiquement zéro.

Ainsi, un réservoir qualifié de vide, contient en réalité un fond de carburant surplombé d’un mélange d’air et de vapeurs du dit carburant. Ceci est valable pour les avions, les bateaux, les voitures et même les mobylettes. Ce mélange est explosif si le rapport entre les quantités d’air et de vapeurs de fuel se trouve dans un intervalle donné. Par contre, pour que l’explosion ait effectivement lieu, il faudrait obligatoirement une source d’ignition ; une étincelle par exemple.

Comme souvent, le NTSB décide de résoudre la question par la méthode expérimentale en construisant des maquettes de réservoir.

Pendant ce temps, la FAA cherche à couper l’herbe sous les pieds du NTSB. En effet, des experts placent des explosifs sur des pièces d’avion et les font exploser. Par la suite, les débris sont plongés dans l’eau de mer et récupérés deux jours après pour analyse. Surprise, pas la moindre trace d’explosif n’est décelable aux analyses. Le NTSB est obligé d’admettre ces résultats et les publie en soulignant les fautes d’orthographe pour marquer son animosité.

En effet, le NTSB avait exclu la thèse du missile en se basant sur des analyses en recherche de traces d’explosif qui se sont avérés négatives.

De plus, les témoins au sol sont formels. Le tiers d’entre eux a vu un objet lumineux monter verticalement depuis le sol « comme un feu d’artifice », puis obliquer vers l’avion qui explosa immédiatement. Des psychologues remettent en question les récits des témoins. Selon eux, quand une personne entend un fort bruit qu’elle associe à une explosion, son cerveau va construire le reste de l’image, c’est-à-dire la fumée, le feu et tout le reste. De plus, les témoins peuvent inconsciemment adapter leur récit aux causes qu’ils retiennent pour le crash.

Néanmoins, les personnes présentes sur les plages de Long Island voient d’abord un éclair blanc monter vers le ciel, un flash de couleur blanche puis de grosses flammes jaunes et oranges descendre vers le sol. Comme le rappellent les opposants à la théorie du réservoir, les missiles Stinger éjectent des flammes d’un blanc vif comme un feu de magnésium, ils explosent également avec un flash blanc. Quant aux avions, ils brûlent avec de grosses flammes jaunes oranges dues à la présence d’hydrocarbures, donc de kérosène, en grande quantité. Des détails comme ceux-ci, les témoins n’auraient pas pu les inventer. De plus, le NTSB qui a étudié les enregistrements des radars couvrant la région, est obligé d’admettre qu’au moins deux points s’approchant de l’avion peu avant l’explosion n’ont pas été identifiés. Mais ils déclarent plus tard, qu’il s’agissait de fausses détections fréquentes avec les radars qui scrutent un ciel surchargé d’avions.

Par ailleurs, aucun cas d’explosion de réservoir n’est formellement documenté. Certains cas datent des années 50 et les résultats de leur enquête ont été toujours discutables.
En décembre 1997, une audition publique est réalisée par le NTSB dans le cadre de l’enquête sur le crash. Aucun des témoins ayant affirmé avoir vu quelque chose monter du sol vers l’avion n’est invité à déposer. Ils sont systématiquement écartés. Ces derniers, toutes des personnes respectables, se réunissent en association et demandent, par le biais de la presse, à être écoutés. Demande vaine, leurs témoignages ne correspondent pas à la vérité officielle.

Par ailleurs, dans un rapport publié par l’ALPA, on apprend que les enquêteurs civils n’ont pas eu les mains libres pour faire leur travail comme à l’habitué. Comme la suspicion d’un acte criminel était forte, plusieurs agences gouvernementales, dont le FBI, se sont immédiatement invitées dans l’enquête et souvent perturbé ou empêché le déroulement de celle-ci. Le NTSB n’a pas eu le droit d’interroger certains témoins ou de prendre certaines photographies. De plus, à cause de leur inexpérience en termes d’enquêtes sur des crashs aériens, certains enquêteurs du FBI détruisaient des pièces importantes d’évidence en les manipulant sans aucune précaution. En fait, pour la première fois dans l’histoire des crashs, toute l’enquête est chapeautée non pas par le NTSB, mais par le FBI. C’est un certain Jamie Gorelick, procureur proche de l’administration Clinton qui réalise ce transfert de pouvoir. Ce même personnage ce retrouve plus tard dans l’enquête sur les attentats du 11 septembre 2001 au grand dam des défenseurs de liberté d’enquête et d’information.

De leurs coté, les expériences du NTSB avec le réservoir ne sont pas concluantes. Certes le mélange air carburant est explosif, mais des les conditions décrites, il n’a pas assez de puissance pour provoquer la dislocation de l’appareil. Pour provoquer un feu, peut être, mais pas couper l’avion en deux en une fraction de seconde. Une expérience est certes montrée avec des effets dévastateurs, mais le réservoir en question était rempli d’un mélange d’air de… propane et d’hydrogène. Le kérosène n’étant pas coopératif, c’est d’autres substances qui sont utilisées. Jamais au cours de cette enquête un réservoir une explosion a pu être réalisée avec du kérosène.

Par ailleurs, le réservoir reproduit au à l’Institut de Technologie de Californie était 4 fois plus petit que le réservoir réel. Or, d’après l’aveu même du NTSB, l’effet du changement d’échelle a des effets pas encore bien compris sur certains phénomènes dont… la propagation des flammes.

Dans un souci de réalisme et pour effacer les critiques, le NTSB loue un 747-100 à la compagnie cargo Evergreen. Cet appareil est amené à l’aéroport JFK puis chargé comme l’était l’avion de la TWA. Enfin, un 747 d’Olympic Airways qui remontait depuis Athènes, se voir confisquer une partie de son carburant qui sera mis dans le réservoir central. L’avion décolle et, bien sur, n’explose pas en vol. Par contre, les capteurs placés en différents points permettent de mesurer la température, la pression et divers autres paramètres du réservoir central.

En août 1997, un vieux 747 garé depuis des années sur un terrain d’aviation en Grande Bretagne, subit les assauts des enquêteurs. L’avion, qui ne peut plus voler, est rempli de sacs de sables représentant les passagers. Par ailleurs, les réservoirs des ailes sont remplis d’eau pour simuler de poids de kérosène. Enfin, du propane est injecté dans le réservoir central puis enflammé par un détonateur. L’explosion est formidable et produit un trou dans le fuselage. Il est déterminé que si elle était survenue en vol, elle aurait coupé l’avion en quatre grandes parties : les ailes, l’avant, puis l’arrière de la cabine.

Les tenants de la théorie du missile marquent un point avec la personne de Pierre Salinger. Cet ancien journaliste d’ABC et ancien secrétaire du Président Kennedy, affirme qu’il détient les preuves que la Navy a détruit l’avion par erreur alors qu’un exercice secret était en cours. Il produit à l’appui de sa thèse des images de satellites russes qui opportunément avaient leurs objectifs braqués sur le site. Salinger croit y voir un missile se diriger vers l’avion. Il dit avoir parlé au père du marin qui aurait abattu l’avion par erreur. Il finit même par en dire trop et se discréditer totalement. Même les journalistes les plus fanatiques des théories du complot, finissent par découvrir des aberrations dans ses propos.

Un chef pilote de la TWA, James Sanders, écrit un livre défendant la théorie du missile que le gouvernement US chercherait à cacher. Son bouquin est un succès et finit par lui attirer des ennuis puisqu’il se retrouve en prison. Il est accusé d’avoir volé des pièces de l’avion. En effet, Sanders n’est pas n’importe qui, il fait partie de la commission d’enquête et grâce à cette qualité, il a accès aux restes de l’appareil. Il aurait subtilisé, avec l’aide d’un autre pilote, des morceaux de sièges avec de faire analyser un dépôt rouge qui se trouvait dessus. Pour Sanders, c’est des restes de carburant de missile, pour le NTSB c’est de la colle utilisée par le fabriquant des sièges. Les analyses divergent et beaucoup d’éléments laissent penser que les échantillons ont été échangés en cours de transfert vers les laboratoires. Il est en effet impossible que des laboratoires différents, mais travaillant selon les mêmes techniques, arrivent à des résultats totalement différents. Selon Sanders, le laboratoire Californien a qui a été confié le morceau de tissu découpé dans un siège a confirmé que la substance rouge contenait dans leur nature et dans leur proportions les substances qui constituent habituellement le combustible solide des missiles.

La théorie du missile trouve également deux soutiens discrets et inattendus : Boeing et la TWA. Ces deux compagnies font face à d’énormes procès pour indemniser les familles des victimes. S’il est démontré que l’avion a été abattu par la Navy ou tout autre partie, leur responsabilité serait naturellement dégagée.

De faibles traces d’explosif sont retrouvées sur la partie droite de l’avion. Le FBI déclare d’abord qu’elles proviennent d’un exercice réalisé six semaines auparavant avec des chiens renifleurs d’explosifs. Des traces d’explosifs sans danger auraient été mis dans l’avion dans le but d’exercer les chiens à les retrouver. Néanmoins, des recherches de journalistes ont démontré qu’un tel exercice n’a jamais eu lieu dans cet avion. Quand le FBI est mis au pied du mur, l’un de ses agents déclare à CNN que les traces viendraient d’une bombe qu’un passager aurait transporté sur lui. Cette hypothétique bombe n’aurait jamais explosé et n’aurait tenu aucun rôle dans le crash. Ainsi, le FBI trouve normal que des passagers transportent, pour convenance personnelle, des bombes sur un avion en vol international.

Les mensonges de succèdent et deviennent, à la longue, irritants pour les familles et le public. Le rapport est final sort dans une ambiance délétère. Plus de 736 témoins qui affirment la même chose, à savoir un éclair monter du sol vers l’avion, sont tout simplement ignorés. Le NTSB, réputé pour sa liberté et son impartialité, est mis sous tutelle du FBI pour cette enquête pourtant orientée, dès le début, vers une défaillance technique.

Quelque soient les causes de ce drame, missile, réservoir à carburant, bombe ou autre, on ne peut que regretter l’attitude des autorités américaines qui ont choisi de ne pas jouer la transparence dans le traitement de ce crash en particulier. Ceci a nourri toutes les spéculations et maintiendra le feu de la polémique pendant de nombreuses années encore. Depuis cette enquête, pas une fois on a vu d’autres réservoirs vides exploser…

De la glace et des ailes : L’accident du Vol Comair 3272

Parfois, quand nous voyons des avions ultramodernes parcourir la moitié de la terre sans escale ou des sondes envoyer des images de planètes ou de comètes lointaines, nous pensons tout savoir sur des choses aussi proches de nous que la formation de la glace sur une aile. L’homme croit qu’il lui reste à découvrir Mars ou Jupiter, mais les domaines de recherche sont parfois plus proches de nous que nous le pensons.

C’est cette idée humble que la nature est venue rappeler durement aux hommes en cette journée du 9 janvier 1997.

Le givrage est un phénomène que tous les automobilistes connaissent les matins d’hiver. La glace ou la neige sous diverses formes se déposent sur les véhicules et les chaussées. Les aviateurs n’ignorent pas ce phénomène et, depuis toujours, ils l’ont pris au sérieux. Si un avion, petit ou grand, commence à se couvrir de givre, la situation devient très vite alarmante. La glace alourdit l’avion de plusieurs centaines de kilos à plusieurs tonnes. Sur les ailes, elle peut provoquer une modification du profil aérodynamique de l’aile. Cette modification est toujours néfaste, l’aile va décrocher plus vite et à des incidences bien moindres que celles qui sont certifiées. En 1997, on savait que le givrage était dangereux, mais on ne savait pas à quel point. Bien des choses ont été apprises lors des recherches initiées après cet accident de janvier 1997.

L’avion impliqué est un bi turbopropulseur. En termes simples, c’est un avion de ligne qui comporte deux puissants moteurs à hélices. Ce genre d’appareils puissants et économiques sont utilisés sur de courtes distances pour emporter quelques dizaines de passagers sur des vols excédant rarement une heure. Statistiquement, ces avions sont plus sujets au givre et aux autres dangers de la météo que leurs grands frères qui passent plus de temps à haute altitude où ces problèmes sont moindres. L’Embraer RT120 est fabriqué au Brésil et les pilotes du monde entier l’apprécient pour sa fiabilité et sa maniabilité.

Tous les avions de transport public sont munis de systèmes qui empêchent la formation du givre ou qui le détruisent une fois qu’il s’est formé. Sur les avions à réaction, de l’air chaud est prélevé au niveau des compresseurs des réacteurs, acheminé par des tubes et enfin soufflé sur les endroits des ailes où la glace a le plus de chances de se former. Ce système abaisse la puissance des réacteurs, aussi, il n’est enclenché qu’en cas de besoin.

Sur les avions à hélices, comme notre Embraer 120, la protection est réalisée selon un système différent. En effet, les moteurs ne sont pas assez puissants pour permettre une forte prise d’air chaud. Aussi a-t-on installé des boudins gonflables de couleur noire sur les bords d’attaques des ailes, sur l’empennage et les autres endroits sensibles. Ainsi, quand le givre se formait, le pilote pouvait appuyer sur un bouton et provoquer le gonflement de ces boudins cassant ainsi la glace. Par nature, ce système exige qu’on laisse la glace se former avant de la casser. On rapporte même une histoire, non documentée, selon laquelle des pilotes auraient oubliés ces boudins gonflés. Lorsque la glace se forma dessus, ils ne furent capables que de dégonfler les boudins et plus les gonfler plus loin pour casser la glace. Cette histoire, largement répandue dans le milieu des pilotes, avait inspiré la procédure qui consistait à attendre vraiment qu’il y ait une bonne couche de glace avant d’intervenir. La glace n’étant pas considérée, alors, comme dangereuse du moment qu’elle ne dépassait pas une certaine épaisseur. Conception fausse, ceci sera démontré par la suite.

Le vol Comair 3272 devait mener les 29 occupants du N265CA de l’aéroport de Cincinnati dans Kentucky à celui de Detroit dans le Michigan. Les deux pilotes étaient expérimentés et respectés dans la compagnie pour leur sérieux et leurs connaissances de l’appareil. Le commandant de bord était, par ailleurs, instructeur sur cet avion ainsi que sur un autre biréacteur exploité par la compagnie.

Attendant un vol en correspondance, l’avion du prendre l’air avec passablement de retard. Souvent, lors de récits de crashs, on apprend que l’avion était en retard. C’est à se demander si un retard important ne représente pas une moins value en terme de sécurité. Fréquemment, l’attente fait arriver de nuit un vol qui a été préparé pour une arrivée de jour. Il arrive que l’attente change les conditions météos préparées et étudiées avant le vol initial. Les pilotes se trouvent fatigués et comme ils doivent enchaîner plusieurs vols de suite, le retard sur un vol pose des contraintes opérationnelles sur toute une série d’autres voyages. Il serait intéressant de confirmer cela par une étude statistique et corrélative, mais l’influence des retards comme facteurs aggravants est constatée dans beaucoup de rapports d’accidents. Bien des avions seraient arrivés à bon port s’ils étaient partis à temps.

L’avion décolle dans des conditions marginales. Pas de turbulences ou d’orages signalés, par contre, les nuages sont denses et couvrent tout le ciel. De plus, des alertes météo indiquent des conditions de givrage modérées à sévères. Avant de prendre son envol, l’avion reçoit « une douche » d’un liquide composé d’eau et d’éthylène glycol. Ce cocktail chasse le givre qui s’est formé sur l’avion durant son stationnement au sol et l’empêche de se reformer pendant une période de 20 minutes environ.

Après le décollage, l’avion monte au niveau 210 pour éviter des turbulences qui régnaient plus bas. Le vol se fait sans histoires et quarante minutes plus tard, c’est le début de la descente sur Detroit.

Les premières nouvelles reçues de l’aéroport ne sont pas brillantes. Les nuages sont bas et la neige tombe. Des voies de circulation (taxiways) et certaines pistes rendues trop glissantes sont fermées. Les chasse neige s’activent afin de maintenir un accessibles un minimum d’installations.

Les pilotes discutent et prévoient tout naturellement une approche aux instruments avec une attention tout à fait particulière au givrage auquel la situation semble très favorable.

Le contrôleur aérien du service d’approche prend en charge le vol 3272 et commence à donner des caps au pilote pour le mettre sur la trajectoire d’approche de la piste 03. Au passage, il leur annonce qu’un DC-9 qui vient de se poser a déclaré la qualité du freinage sur cette piste était particulièrement mauvaise. Les pilotes doivent donc poser le plus lentement possible et ruser avec l’avion pour le diriger et l’arrêter sur cette vaste patinoire.

Entre en jeu un autre acteur. Un Airbus A320 s’annonce et doit aussi atterrir sur la piste 03. L’ennui est que l’Airbus est bien plus rapide que l’Embraer et le contrôleur n’a aucun choix que de le faire passer avant s’il veut éviter le télescopage. Mais une fois que l’A320 passe avant, les problèmes ne sont pas finis. L’Embraer doit rester loin derrière s’il ne veut pas se faire secouer par ses turbulences de sillages. Le contrôleur donne au vol 3272 des caps qui vont l’éloigner momentanément de l’axe d’approche et lui fait faire des zigzags pour que l’A320 puisse bien s’éloigner devant.

Toutes ces manœuvres se déroulent en pleins nuages givrants. Le contrôleur aérien ne peut pas donner des ordres aux pilotes. Il leur donne des instructions afin d’expédier le trafic dans l’intérêt de tout le monde. Si le pilote juge une instruction dangereuse ou inadaptée à son avion, il peut en tout moment demander une instruction modifiée. Le contrôleur est alors tenu de communiquer à l’équipage des instructions plus adaptées ; c’est la Loi. Mais ce jour là, ni les pilotes, ni le contrôleur ne pensent au danger.

Afin de pouvoir poser le plus lentement possible sur une piste glissante et contaminée, l’équipage de l’Airbus A320 sort totalement et ralentit le plus qu’il peut sur l’axe d’approche. L’Embraer, qui vole à 170 nœuds, commence progressivement à le rattraper. Voyant la situation sur son radar, le contrôleur appuie sur son bouton d’émission et contacte le vol 3272 pour leur donner une énième instruction :

– Tournez maintenant au cap 090 et réduisez votre vitesse à 150 nœuds.

Le Comair accuse réception du message. Ca sera le dernier message qu’on ne recevra jamais de lui. Dans le poste, les pilotes s’inquiètent du comportement du contrôleur. Deux fois de suite il leur a demandé de maintenir 150 nœuds. Le ton est amusé, mais lourd de sens :
Le copilote : ce gars a…
Le commandant : il nous l’a dit deux fois !
Le copilote : il a des problèmes de mémoire je crois
Le commandant : c’est ça tu penses ?
Le copilote : Oui, je crois qu’il a la maladie d’Alzheimer ! Je crois que c’est ça son problème.

La suite, comme souvent, est racontée par les boites noires. L’avion est à 4’000 pieds, dans les nuages, et tourne à gauche pour rejoindre le cap assigné. La vitesse est de 156 nœuds et donc à priori correcte pour ce type d’avion. Quand il a fini son virage à gauche, le pilote tourne le manche à droite pour ramener l’avion à l’horizontale. Au grand étonnement du pilote, l’avion répondit en s’inclinant encore à gauche. Surpris, le pilote tourne encore plus le manche à droite : l’avion continue encore à s’incliner à gauche et, en deux secondes, il est pratiquement sur le dos. Les pilotes augmentent la puissance des moteurs, mais ceci ne change plus rien à la situation.

L’avion descend très rapidement et s’écrase dans un champ, près d’une église, tuant sur coup les 26 passagers et les 3 membres d’équipage.

L’enquête commença par rechercher les causes du côté des turbulences de sillage. En effet, quand un avion passe dans le sillage d’un avion plus gros, il peut se retrouver déséquilibré. Cependant, l’analyse des enregistrements radar écarta immédiatement cette hypothèse. Le contrôleur avait fait son travail et avait en tout moment assuré une séparation suffisante entre l’Embraer et l’Airbus A320.

Reste le givrage. Tous les avions qui volaient au même moment, avaient subi du givrage à un degré plus ou moins avancé. Le problème de la glace se déposant sur les ailes, a été étudié des les années 30 par le célèbre NACA . Il était rapidement apparu qu’une couche de glace de trois dixièmes d’épaisseur, recouvrant 5 à 10% de la surface de l’aile, pouvait provoquer une baisse allant jusqu’à 6 degrés de l’incidence de décrochage. En d’autres mots, un avion recouvert d’une quantité « insignifiante » de glace, pouvait décrocher bien plus facilement qu’on ne le croit. En 1979, un ingénieur de Douglas écrivait : « la formation de glace à texture sablonneuse sur une partie de l’aile peut provoquer une forte augmentation de la vitesse de décrochage. Le pilote croit voler à 30% au dessus la vitesse de décrochage alors qu’en réalité, il n’est est qu’à 10%. ». De plus, ce spécialiste rajoutait que rien dans le comportement de l’avion n’avertissait les pilotes sur cette situation. Cette glace rugueuse, qui donne à l’aile la même texture que du papier à verre, provoque le décrochage avant même que l’incidence, ou la vitesse, limite ne soit atteinte. L’alarme de décrochage, qui surveille l’incidence, ne se déclanche même pas.

L’alarme de décrochage, sur certains avions, réduit l’incidence de déclanchement d’une valeur forfaitaire quand les systèmes anti-givrage sont activés. L’Embraer n’était pas équipé d’un tel système.

Le NTSB et la FAA aidés par la NASA et l’université de Champain dans l’Illinois reprennent la copie à zéro. Normalement, au cours de leur certification, tous les avions de ligne doivent démontrer une bonne tolérance aux dépôts de glace. Des vols d’essais sont réalisés dans ce sens ainsi que des tests en soufflerie. Parfois, des formes sont apposées sur les ailes pour simuler la déformation due à la glace. Or, dans tout le processus de certification, le cas plus défavorable était considéré comme résultant d’une accumulation de glace épaisse sur les ailes. Des tests auraient été fait avec 2 cm d’épaisseur de glace ! Ainsi, si le givre se déposait sur une épaisseur moindre, on pensait naturellement qu’il était moins dangereux.

Après l’accident, il fut déterminé qu’une fine couche de glace granuleuse et invisible à l’œil nu avait un plus fort impact sur la vitesse décrochage qu’une couche de 7 centimètres se déposant sur le bord d’attaque de l’aile. Paradoxalement, les procédures de l’époque exigeaient que le pilote observe le dépôt de givre et agisse quand celui-ci atteint une épaisseur respectable, c’est-à-dire, un à deux centimètres selon les constructeurs. Le gonflage des boudins casse alors cette couche de glace qui est emportée par le vent.

Le résultat des recherches fut sans appel : « le dégradation des performances aérodynamiques peut atteindre un niveau très dangereux avant même que le pilote ne soit à même de percevoir la formation du givre. »

Quand à l’histoire que tous les pilotes se répètent, celle des boudins gonflés sur lesquels la glace se forme et qui devient impossible à enlever, elle a été qualifiée par la FAA de « mythe ». L’AOPA a également critiqué cette histoire et fait remonter son origine aux années 30, à l’époque où les boudins gonflables avaient une faible puissance et mettaient longtemps à briser la glace.

La procédure recommandée fut alors que les pilotes activent les boudins en cycle dès l’entrée en conditions givrantes. Aucune attente ou laisser-aller ne sont acceptés.

Un retour sur des accidents précédents, montra que des centaines de vie auraient pu être épargnées si ce phénomène avait été découvert et les conséquences tirées plus tôt.

Malheureusement, dans l’aviation, comme ailleurs, les nouvelles ne circulent pas vite et les gens ont toujours une forte réticence à abandonner leurs pratiques ancestrales et les mythes bien établis. En juillet 2000, le département britannique des transports, à l’occasion d’un incident grave avec un avion immatriculé G-WEAC, recommande aux pilotes : « de ne gonfler les boudins sur les ailes que lorsque l’avion a accumulé du givre pour ne pas courir le risque de voir la glace s’accumuler sur les boudins gonflés et les rendre ineffectifs. »

Le NTSB a également pointé un autre phénomène qui souvent aggrave les pertes de contrôle dues à un élément extérieur : l’usage du pilote automatique. Quand ce système s’occupe de la conduite de l’appareil, l’homme perd le contact physique avec sa machine. Parfois, l’avion commence à avoir une forte tendance à s’incliner, mais les pilotes ne le remarquent pas puisqu’ils n’ont pas les mains sur les commandes. Le pilote automatique se bat en silence pour maintenir l’avion. Quand le pilote automatique se déclanche ou est déclanché, le problème a souvent atteint un niveau gravissime. Les pilotes voient subitement leur avion partir sur dos à peine ont-ils débranché le pilote automatique.

Dans le cas du Comair, il a été déterminé que si les pilotes avaient débranché le pilote automatique une minute plutôt, ils auraient senti le mouvement subtil qu’avait l’avion à partir sur la gauche malgré le braquage des ailerons vers la droite. Malheureusement, quand le pilote automatique a été débranché, ou s’est débranché tout seul, les pilotes ont vu leur avion partir dans une situation désespérée.

CFIT : Havoc 48 – US Air Force

Les CFIT , ou vol contrôlés dans le terrain, sont parmi les crashs les plus nombreux et les plus meurtriers comptabilisés de nos jours. En lisant les abondants rapports d’accidents sur le thème, on peut distinguer, à priori, deux types de CFIT : ceux où le pilote sait qu’il va vers le sol et ceux où il ne sait pas. Dans le premier cas, quand l’alarme de proximité de sol se déclanche (GPWS), le pilote persiste et signe croyant qu’il sait ce qu’il fait. Dans le second cas, les pilotes sont totalement pris de court et leur tendance est de penser que l’alarme est abusive.

Le vol Havoc 58 impliqua un Hercules C-130 de l’armée de l’air des Etats-Unis. Ce CFIT est très particulier parce qu’il survient en montée. Beaucoup de passagers et, même des pilotes, s’inquiètent de la proximité du terrain lors des phases de descente. Cette peur est naturelle et même statistiquement justifiée. Elle ne doit pas faire oublier cependant qu’il est possible de faire un CFIT en montée : il suffit que le terrain monte plus vite que l’avion.

Il est peu spécial ce vol Havoc 58. Le vol est détourné de sa destination initiale par un ordre d’atterrir dans un petit aérodrome pour prendre un chargement classé « Secret Défense ». Sans poser de questions, les pilotes de l’Hercules virent de bord et se rendent au point de rendez-vous : l’aérodrome de Jackson Hole dans le Wyoming. Ce petit terrain civil est perdu au milieu d’une magnifique région montagneuse rappelant les Alpes suisses ou les Pyrénées. Arrivant en pleine nuit, notre équipage n’a pas l’opportunité de profiter du spectacle de la nature ; hélas.

Les pilotes ne sont jamais venus précédemment. Ils atterrissent se servant de cartes publiées par l’armée et qui n’ont ni la lisibilité, ni la convivialité des Jeppesen qu’on trouve dans tous les avions du transport civil. Un T, comme Terrain, écrit en blanc sur un triangle noir signale aux militaires le danger des montagnes environnantes.

Sur place, les pilotes, un homme et une femme, apprennent que le voyage a quelque chose à voir avec les déplacements de Bill Clinton, président des USA à l’époque. On leur demande d’embarquer une voiture blindée plus une palette de matériel dont la désignation est classé. Néanmoins, les documents indiquent que le matériel est assuré pour 1.4 millions de dollars ce que est consistant avec de l’équipement de communication de dernière technologie.

Afin de s’assurer que les pilotes n’iront pas fouiner dans le fret une fois en vol, des agents secrets s’invitent à bord de l’appareil. Ils ne quittent pas le chargement des yeux. Le plan de vol est déposé, destination aéroport John Fitzgerald Kennedy dans l’Etat de New York. Se joint également à l’équipe un jeune navigateur. C’est son premier vol, il est tout excité. Il n’avait pas encore passé tous ses examens et d’après ses collègues, il avait encore de la peine à lire correctement les cartes.

Neuf personnes en tout sont dans l’avion quand il commence à circuler avec la force de quatre hélices qui brassent l’air et donc le bruit résonne des kilomètres plus loin. Le contrôleur prend contact avec l’équipage et leur demande s’ils sont conscients des mesures anti-bruit en vigueur sur l’aérodrome. Il devra la formuler plusieurs fois afin d’obtenir un « oui » méprisant et peu convaincu. Il sera établi plus tard, que les pilotes n’avaient pas la moindre idée des mesures anti-bruit comme ils n’avaient pas la moindre idée de la position du relief autour de l’aéroport.

Le copilote est une femme, elle se trouve l’U.S. Air Force depuis moins d’an et se voit certainement dans dix ans sur un 767 d’une compagnie civile parcourant les destinations touristiques les plus en vogue. Le commandant de bord, lui, est du genre blasé. Il n’accorde aucune attention à l’organisation du vol. Quand le navigateur lui demande ses intentions, la réponse est de ce goût là : « on décolle, puis on avise ».

Quand l’avion s’aligne sur la piste, le navigateur mouille sa veste : il y a des montagnes dans l’axe, juste après le décollage, il faut tourner au cap 80 pour les éviter.

La puissance maximale est affichée et l’avion prend son envol. Douze secondes plus tard, le commandant de bord, qui a les commandes, tourne au cap 80. Une minute plus tard, une fois à hauteur suffisante, il passe les commandes à son copilote. Comme elle est nouvelle sur cet avion, il lui permet de faire des étapes faciles pour qu’elle prenne la main. Celle-ci poursuit la montée et comme il fait nuit dehors, elle se concentre sur ces instruments. Le variomètre est nettement positif est l’altimètre monte en conséquence. Vol tranquille en perspective.

Soudain, le radioaltimètre a un comportement que la dame aux commandes va trouver follement amusant. L’aiguille qui était bloquée à 2’500 pieds, qui est le maximum de portée de l’instrument, décroche tout à coup et commence à aller rapidement vers zéro. Voyant que l’avion est nettement en montée, elle pense que l’instrument a un problème. Elle va dire exactement ceci :

– Mon radioaltimètre est mort !

Deux secondes plus tard, tout le monde est mort. L’avion percute la montagne et les milliers de morceaux qui en résultent son pulvérisés sur plusieurs centaines de mètres. Immédiatement après, le silence retombe sur la montagne comme rien ne s’était passé.

Aucune route ne mène à l’endroit. Les secouristes ont du s’y rendre à cheval lors d’un trekking qui a duré une grande partie de la nuit. Les enquêteurs militaires ont constaté que l’avion s’est encastré dans le relief à moins de 30 mètres du sommet. Pour peu, il passait. Mais tous les pilotes vous les diront. Deux choses sur lesquelles ils ne faut jamais compter : la piste qui est derrière et l’altitude qui est dessus.